recherche
Maisondéveloppement back-endTutoriel PythonDu débutant au confirmé, illustrez la méthode de dessin avec Matplotlib

Du débutant au confirmé, illustrez la méthode de dessin avec Matplotlib

Méthodes de dessin Matplotlib illustrées : de base à avancée, des exemples de code spécifiques sont requis

Introduction :
Matplotlib est une puissante bibliothèque de dessins couramment utilisée pour la visualisation de données. Qu'il s'agisse d'un simple graphique linéaire, d'un nuage de points complexe ou d'un graphique 3D, Matplotlib peut répondre à vos besoins. Cet article présentera en détail les méthodes de dessin de Matplotlib, de base à avancée, et fournira des exemples de code spécifiques.

1. Installation et importation de Matplotlib

  1. Installer Matplotlib
    Utilisez la commande pip install matplotlib dans le terminal pour installer Matplotlib.
  2. Importer Matplotlib
    Utilisez import matplotlib.pyplot as plt pour importer Matplotlib et convenez de l'alias couramment utilisé plt pour faciliter les appels ultérieurs.

2. Dessinez un graphique linéaire simple
Ce qui suit est un exemple de graphique linéaire simple, montrant l'évolution des ventes d'une entreprise au cours des 12 derniers mois.

import matplotlib.pyplot as plt

# 数据
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
sales = [100, 120, 150, 130, 140, 160, 180, 170, 190, 200, 210, 220]

# 创建图表和画布
plt.figure(figsize=(8, 6))

# 绘制折线图
plt.plot(months, sales, marker='o', linestyle='-', color='blue')

# 设置标题和标签
plt.title('Sales Trend')
plt.xlabel('Months')
plt.ylabel('Sales')

# 显示图表
plt.show()

3. Style de graphique personnalisé
Matplotlib fournit une multitude de paramètres de style de graphique, qui peuvent rendre vos graphiques plus personnalisés et plus beaux.

  1. Ajuster la couleur et le style de ligne

    plt.plot(months, sales, marker='o', linestyle='-', color='blue')

    Vous pouvez définir le style du marqueur via le paramètre marqueur, le paramètre style de ligne via le paramètre style de ligne et la couleur via le paramètre de couleur.

  2. Définissez la légende

    plt.plot(months, sales, marker='o', linestyle='-', color='blue', label='Sales')
    plt.legend()

    Utilisez le paramètre label pour définir l'étiquette de la légende, puis utilisez la méthode plt.legend() pour afficher la légende.

  3. Ajouter des lignes de quadrillage

    plt.grid(True)

    Utilisez la méthode plt.grid(True) pour ajouter des lignes de quadrillage.

4. Dessinez des nuages ​​de points et des graphiques à barres
En plus des graphiques linéaires, Matplotlib prend également en charge le dessin de nuages ​​de points et de graphiques à barres.

  1. Dessinez un nuage de points
    Vous trouverez ci-dessous un exemple simple de nuage de points montrant la relation entre la température et les précipitations dans une ville.
import matplotlib.pyplot as plt

# 数据
temperature = [15, 19, 22, 18, 25, 28, 30, 29, 24, 20]
rainfall = [20, 40, 30, 10, 55, 60, 70, 50, 45, 35]

# 创建图表和画布
plt.figure(figsize=(8, 6))

# 绘制散点图
plt.scatter(temperature, rainfall, color='red')

# 设置标题和标签
plt.title('Temperature vs Rainfall')
plt.xlabel('Temperature (°C)')
plt.ylabel('Rainfall (mm)')

# 显示图表
plt.show()
  1. Dessinez un graphique à barres
    Vous trouverez ci-dessous un exemple simple de graphique à barres qui montre les ventes d'un certain produit dans différentes régions.
import matplotlib.pyplot as plt

# 数据
regions = ['North', 'South', 'East', 'West']
sales = [100, 120, 150, 130]

# 创建图表和画布
plt.figure(figsize=(8, 6))

# 绘制条形图
plt.bar(regions, sales, color='blue')

# 设置标题和标签
plt.title('Sales by Region')
plt.xlabel('Region')
plt.ylabel('Sales')

# 显示图表
plt.show()

5. Dessinez des graphiques avancés
Matplotlib peut également dessiner des graphiques plus complexes, tels que des diagrammes circulaires et des graphiques 3D.

  1. Dessinez un diagramme circulaire
    Vous trouverez ci-dessous un exemple simple de diagramme circulaire qui montre la proportion des ventes de différents produits sur un marché.
import matplotlib.pyplot as plt

# 数据
products = ['A', 'B', 'C', 'D']
sales = [30, 20, 25, 15]

# 创建图表和画布
plt.figure(figsize=(8, 6))

# 绘制饼图
plt.pie(sales, labels=products, autopct='%.1f%%')

# 设置标题
plt.title('Sales by Product')

# 显示图表
plt.show()
  1. Dessiner un graphique 3D
    Ce qui suit est un exemple simple de graphique 3D, montrant le graphique de surface tridimensionnel d'une certaine fonction.
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

# 数据
x = np.linspace(-5, 5, 100)
y = np.linspace(-5, 5, 100)
X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))

# 创建图表和画布
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111, projection='3d')

# 绘制3D图
ax.plot_surface(X, Y, Z, cmap='viridis')

# 设置标题和标签
ax.set_title('3D Surface Plot')
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_zlabel('Z')

# 显示图表
plt.show()

Conclusion :
Grâce à l'introduction et aux exemples de cet article, nous pouvons comprendre les méthodes de dessin et les techniques d'utilisation de Matplotlib. Qu'il s'agisse d'un simple graphique linéaire ou d'un nuage de points complexe et d'un graphique 3D, Matplotlib offre une multitude de fonctions et d'options pour répondre aux différents besoins de visualisation de données. J'espère que cet article sera utile aux utilisateurs débutants et expérimentés, afin qu'ils puissent mieux utiliser Matplotlib pour l'analyse et l'affichage des données.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Merger des listes dans Python: Choisir la bonne méthodeMerger des listes dans Python: Choisir la bonne méthodeMay 14, 2025 am 12:11 AM

TomegelistSinpython, vous pouvez faire l'opérateur, ExtendMethod, ListComprehension, oriteroTools.chain, chacun avec des avantages spécifiques: 1) l'opératorissimplebutlessoficiesivetforlatelists; 2) ExtendisMemory-EfficientButmodifiestheoriginallist; 3)

Comment concaténer deux listes dans Python 3?Comment concaténer deux listes dans Python 3?May 14, 2025 am 12:09 AM

Dans Python 3, deux listes peuvent être connectées via une variété de méthodes: 1) Utiliser l'opérateur, qui convient aux petites listes, mais est inefficace pour les grandes listes; 2) Utiliser la méthode Extende, qui convient aux grandes listes, avec une efficacité de mémoire élevée, mais modifiera la liste d'origine; 3) Utiliser * l'opérateur, qui convient à la fusion de plusieurs listes, sans modifier la liste originale; 4) Utilisez Itertools.chain, qui convient aux grands ensembles de données, avec une efficacité de mémoire élevée.

Chaînes de liste de concaténate pythonChaînes de liste de concaténate pythonMay 14, 2025 am 12:08 AM

L'utilisation de la méthode join () est le moyen le plus efficace de connecter les chaînes à partir des listes de Python. 1) Utilisez la méthode join () pour être efficace et facile à lire. 2) Le cycle utilise les opérateurs de manière inefficace pour les grandes listes. 3) La combinaison de la compréhension de la liste et de la jointure () convient aux scénarios qui nécessitent une conversion. 4) La méthode Reduce () convient à d'autres types de réductions, mais est inefficace pour la concaténation des cordes. La phrase complète se termine.

Exécution de Python, qu'est-ce que c'est?Exécution de Python, qu'est-ce que c'est?May 14, 2025 am 12:06 AM

PythonexecutionistheprocessoftransformingpythoncodeintoexecuableInstructions.1) the IntrepreterredSthecode, convertingitintoStecode, quithepythonvirtualmachine (pvm)

Python: quelles sont les principales caractéristiquesPython: quelles sont les principales caractéristiquesMay 14, 2025 am 12:02 AM

Les caractéristiques clés de Python incluent: 1. La syntaxe est concise et facile à comprendre, adaptée aux débutants; 2. Système de type dynamique, améliorant la vitesse de développement; 3. Rich Standard Library, prenant en charge plusieurs tâches; 4. Community et écosystème solide, fournissant un soutien approfondi; 5. Interprétation, adaptée aux scripts et au prototypage rapide; 6. Support multi-paradigme, adapté à divers styles de programmation.

Python: compilateur ou interprète?Python: compilateur ou interprète?May 13, 2025 am 12:10 AM

Python est une langue interprétée, mais elle comprend également le processus de compilation. 1) Le code Python est d'abord compilé en bytecode. 2) ByteCode est interprété et exécuté par Python Virtual Machine. 3) Ce mécanisme hybride rend Python à la fois flexible et efficace, mais pas aussi rapide qu'une langue entièrement compilée.

Python pour Loop vs While Loop: Quand utiliser lequel?Python pour Loop vs While Loop: Quand utiliser lequel?May 13, 2025 am 12:07 AM

Usaforloopwheniterating aepasquenceorfor pourpascific inumberoftimes; useawhileloopwencontinTutuntutilaconditioniseMet.ForloopsareIdealForkNown séquences, tandis que celle-ci, ce qui est en train de réaliser des étages.

Python Loops: les erreurs les plus courantesPython Loops: les erreurs les plus courantesMay 13, 2025 am 12:07 AM

PythonloopscanleadtoerrorlikeInfiniteLoops, modificationlistDuringiteration, off-by-by-oneerrors, zéro-indexingisss et intestloopinefficisecy.toavoid this: 1) use'i

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

<🎜>: Bubble Gum Simulator Infinity - Comment obtenir et utiliser les clés royales
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
Nordhold: Système de fusion, expliqué
4 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
Mandragora: Whispers of the Witch Tree - Comment déverrouiller le grappin
3 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Listes Sec

Listes Sec

SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

SublimeText3 version anglaise

SublimeText3 version anglaise

Recommandé : version Win, prend en charge les invites de code !

SublimeText3 Linux nouvelle version

SublimeText3 Linux nouvelle version

Dernière version de SublimeText3 Linux

VSCode Windows 64 bits Télécharger

VSCode Windows 64 bits Télécharger

Un éditeur IDE gratuit et puissant lancé par Microsoft

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)