


Le 19ème siècle était la période où le mouvement artistique impressionniste était populaire. Le mouvement était influent dans les domaines de la peinture, de la sculpture, de la gravure et d'autres arts. L'impressionnisme était caractérisé par l'utilisation de coups de pinceau courts et saccadés avec peu de recherche de précision formelle, qui ont ensuite évolué vers le style artistique impressionniste. En bref, les coups de pinceau de l'artiste impressionniste sont inchangés, présentent des caractéristiques évidentes, ne recherchent pas la précision formelle et sont même quelque peu vagues. Les artistes impressionnistes ont introduit les concepts scientifiques de lumière et de couleur dans leurs peintures et ont révolutionné les concepts de couleurs traditionnels.
Dans D3GA, l'auteur a un objectif unique : il espère créer un effet de performance photo-réaliste en faisant le contraire. Afin d'atteindre cet objectif, l'auteur a utilisé de manière créative la technologie d'éclaboussure gaussienne dans D3GA comme un « coup de pinceau segmenté » moderne pour construire la structure et l'apparence des personnages virtuels et obtenir un effet stable et en temps réel.
"Sunrise·Impression" est l'œuvre représentative du célèbre peintre impressionniste Monet.
Afin de créer des images humaines réalistes pouvant générer de nouveaux contenus pour l'animation, la construction d'avatars nécessite actuellement une grande quantité de données multi-vues. En effet, les méthodes monoculaires ont une précision limitée. De plus, les techniques existantes nécessitent un prétraitement complexe, notamment un repérage 3D précis. Cependant, l’obtention de ces données d’enregistrement nécessite une itération et est difficile à intégrer dans un processus de bout en bout. De plus, il existe des méthodes qui ne nécessitent pas d'enregistrement précis et qui sont basées sur les champs de rayonnement neuronal (NeRF). Cependant, ces méthodes sont souvent lentes lors du rendu en temps réel ou rencontrent des difficultés avec l'animation des vêtements.
Kerbl et al. ont proposé une méthode de rendu appelée 3D Gaussian Splatting (3DGS), qui est améliorée sur la base de la méthode de rendu classique Surface Splatting. Comparé aux méthodes de pointe basées sur les champs de rayonnement neuronal, le 3DGS est capable de restituer des images de meilleure qualité à des fréquences d'images plus rapides et sans nécessiter une initialisation 3D très précise.
Cependant, 3DGS a été initialement conçu pour les scènes statiques. À l'heure actuelle, certaines personnes ont proposé la méthode Gaussian Splating basée sur des conditions temporelles, qui peut être utilisée pour restituer des scènes dynamiques. Cette méthode ne peut restituer que ce qui a été observé précédemment et n'est donc pas adaptée pour exprimer un mouvement nouveau ou inédit.
Sur la base du champ de rayonnement neuronal piloté, l'auteur modélise l'apparence et la déformation d'humains 3D, en les plaçant dans un espace normalisé, mais en utilisant des gaussiennes 3D au lieu de champs de rayonnement. En plus de meilleures performances, le Splatting gaussien élimine le besoin d’utiliser l’heuristique d’échantillonnage des rayons de la caméra.
Le problème restant est de définir les signaux qui déclenchent ces déformations de cage. Les technologies de pointe actuelles en matière d'avatars basés sur des pilotes nécessitent des signaux d'entrée denses, tels que des images RVB-D ou même plusieurs caméras, mais ces méthodes peuvent ne pas convenir aux situations où la bande passante de transmission est relativement faible. Dans cette étude, les auteurs utilisent des données plus compactes basées sur des poses humaines, notamment des angles d'articulations squelettiques et des points clés du visage 3D sous forme de quaternions.
En entraînant des modèles spécifiques à chaque individu sur neuf séquences multi-vues de haute qualité couvrant une variété de formes corporelles, de mouvements et de vêtements (sans se limiter aux vêtements intimes), nous pouvons ensuite créer de nouvelles poses pour n'importe quel sujet.
Aperçu de la méthode
- Lien papier : https://arxiv.org/pdf/2311.08581.pdf
- Lien du projet : https://zielon.github.io/d3ga/
Méthodes actuellement utilisées pour volumétriquer dynamiquement les personnages virtuels, soit mapper les points de l'espace de déformation à l'espace canonique, soit s'appuyer uniquement sur le mappage direct. Les méthodes basées sur le back-mapping ont tendance à accumuler des erreurs dans l'espace canonique car elles nécessitent un back-pass sujet aux erreurs et sont problématiques dans la modélisation des effets dépendants de la perspective.
Par conséquent, l'auteur a décidé d'adopter la méthode de cartographie directe uniquement. D3GA est basé sur 3DGS et étendu via une représentation neuronale et une cage pour modéliser respectivement la couleur et la forme géométrique de chaque partie dynamique du personnage virtuel.
D3GA utilise la pose 3D ϕ, l'intégration du visage κ, le point de vue dk et la cage canonique v (et les caractéristiques de couleur décodées automatiquement hi) pour générer le rendu final C¯ et le rendu de segmentation auxiliaire P¯. L'entrée de gauche est traitée via trois réseaux (ΨMLP, ΠMLP, ΓMLP) par partie de personnage virtuel pour générer un déplacement de cage Δv, des déformations gaussiennes bi, qi, si et une couleur/transparence ci, oi.
Une fois que la déformation en cage a déformé la gaussienne canonique, elles sont pixellisées dans l'image finale via l'équation 9.
Résultats expérimentaux
D3GA est évalué sur des métriques telles que SSIM, PSNR et la métrique perceptuelle LPIPS. Le tableau 1 montre que D3GA a les meilleures performances en PSNR et SSIM parmi les méthodes qui utilisent uniquement LBS (c'est-à-dire qu'il n'est pas nécessaire de numériser les données 3D pour chaque image) et surpasse toutes les méthodes FFD dans ces indicateurs, juste derrière pour BD. FFD, malgré son mauvais signal d'entraînement et l'absence d'images de test (le DVA a été testé avec les 200 caméras).
La comparaison qualitative montre que D3GA peut mieux modéliser les vêtements que d'autres méthodes de pointe, en particulier les vêtements amples comme les jupes ou les pantalons de survêtement (Figure 4). FFD signifie Free Deformation Mesh, qui contient des signaux d'entraînement plus riches que les maillages LBS (Figure 9).
Par rapport à sa méthode basée sur le volume, la méthode de l'auteur peut séparer les vêtements du personnage virtuel, et les vêtements sont également pilotables. La figure 5 montre que chaque couche de vêtement individuelle peut être contrôlée uniquement par les angles d'articulation osseuse, sans nécessiter un module d'enregistrement de vêtement spécifique.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

La révolution de l'IA de Google Chrome: une expérience de navigation personnalisée et efficace L'intelligence artificielle (IA) transforme rapidement notre vie quotidienne, et Google Chrome mène la charge dans l'arène de navigation Web. Cet article explore les exciti

Réinventuation d'impact: le quadruple bas Pendant trop longtemps, la conversation a été dominée par une vision étroite de l’impact de l’IA, principalement axée sur le résultat du profit. Cependant, une approche plus holistique reconnaît l'interconnexion de BU

Les choses évoluent régulièrement vers ce point. L'investissement affluant dans les prestataires de services quantiques et les startups montre que l'industrie comprend son importance. Et un nombre croissant de cas d'utilisation réels émergent pour démontrer sa valeur

Vous êtes pressé de respecter une date limite et de décider d'utiliser Chatgpt pour créer un e-mail marketing. Vous tapez l'invite d'IA, "Écrivez un e-mail marketing professionnel de 100 mots". Le résultat est un document générique rempli de jargon dépourvu

Introduction Imaginez avoir besoin d'identifier les meilleurs représentants des ventes de votre entreprise à partir de milliers de transactions et de nombreux facteurs contributifs. Les méthodes traditionnelles deviennent lourdes. Les fonctions de classement de SQL offrent une solution efficace pour concevoir

La Chambre des représentants et le Sénat ont tous deux accepté un cadre budgétaire au cours du week-end. Le cadre prévoit des réductions de dépenses pour payer des réductions d'impôts qui vont de manière disproportionnée aux riches et aux fonds pour éviter l'augmentation des déficits tout en augmentant

"L'IA ne devrait pas être un Big Bang", m'a dit le PDG de Snowflake dans un assiet. «Ce devrait être une série de petits projets qui montrent de la valeur à chaque étape du processus.» Mais comme Ramaswamy l'a noté, bien que cela puisse sembler prudence, c'est en fait une stratégie. Dans l'Inter

"Le contenu généré par l'IA continue d'inonder des plates-formes de streaming comme Deezer, et nous ne voyons aucun signe de ralentissement", a déclaré Aurelien Herault, directeur de l'innovation de Deezer dans un communiqué. Bien qu'il n'y ait aucun signe de l'atteinte des inondations, Deezer a


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Listes Sec
SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

Version Mac de WebStorm
Outils de développement JavaScript utiles

mPDF
mPDF est une bibliothèque PHP qui peut générer des fichiers PDF à partir de HTML encodé en UTF-8. L'auteur original, Ian Back, a écrit mPDF pour générer des fichiers PDF « à la volée » depuis son site Web et gérer différentes langues. Il est plus lent et produit des fichiers plus volumineux lors de l'utilisation de polices Unicode que les scripts originaux comme HTML2FPDF, mais prend en charge les styles CSS, etc. et présente de nombreuses améliorations. Prend en charge presque toutes les langues, y compris RTL (arabe et hébreu) et CJK (chinois, japonais et coréen). Prend en charge les éléments imbriqués au niveau du bloc (tels que P, DIV),

VSCode Windows 64 bits Télécharger
Un éditeur IDE gratuit et puissant lancé par Microsoft

DVWA
Damn Vulnerable Web App (DVWA) est une application Web PHP/MySQL très vulnérable. Ses principaux objectifs sont d'aider les professionnels de la sécurité à tester leurs compétences et leurs outils dans un environnement juridique, d'aider les développeurs Web à mieux comprendre le processus de sécurisation des applications Web et d'aider les enseignants/étudiants à enseigner/apprendre dans un environnement de classe. Application Web sécurité. L'objectif de DVWA est de mettre en pratique certaines des vulnérabilités Web les plus courantes via une interface simple et directe, avec différents degrés de difficulté. Veuillez noter que ce logiciel