Maison > Article > Périphériques technologiques > DetZero : Waymo se classe premier sur la liste de détection 3D, comparable à l'annotation manuelle !
Cet article propose un ensemble de cadres d'algorithmes de détection d'objets 3D hors ligne DetZero. Grâce à une recherche et une évaluation complètes de l'ensemble de données publiques de Waymo, DetZero peut générer des séquences de trajectoires d'objets continues et complètes et utiliser pleinement les nuages de points à long terme. Les fonctionnalités améliorent considérablement la qualité des résultats perçus. Dans le même temps, il s'est classé premier dans le classement de détection d'objets WOD 3D avec une performance de 85,15 mAPH (L2). De plus, DetZero peut fournir un étiquetage automatique de haute qualité pour la formation de modèles en ligne, et ses résultats ont atteint, voire dépassé, le niveau de l'étiquetage manuel.
Voici le lien papier : https://arxiv.org/abs/2306.06023
Le contenu qui doit être réécrit est : Lien de code : https://github.com/PJLab-ADG/DetZero
Veuillez visiter le lien de la page d'accueil : https://superkoma.github.io/detzero-page
Afin d'améliorer l'efficacité de l'annotation des données, nous avons étudié une nouvelle méthode. Cette méthode est basée sur le deep learning et l’apprentissage non supervisé et peut générer automatiquement des données annotées. En utilisant de grandes quantités de données non étiquetées, nous pouvons entraîner un modèle de perception de conduite autonome pour reconnaître et détecter des objets sur la route. Cette méthode peut non seulement réduire le coût d’étiquetage des données, mais également améliorer l’efficacité du post-traitement. Nous avons utilisé la méthode de détection d'objets 3D hors ligne 3DAL[] de Waymo comme base de comparaison dans nos expériences, et les résultats montrent que la méthode proposée présente des améliorations significatives en termes de précision et d'efficacité. Nous pensons que cette méthode jouera un rôle important dans la future technologie de conduite autonome
Cet article propose un nouveau cadre d'algorithme de détection d'objets 3D hors ligne appelé DetZero. Ce cadre présente les caractéristiques suivantes : (1) Utiliser des détecteurs 3D multi-images et des trackers hors ligne comme modules en amont pour fournir un suivi d'objet précis et complet, en se concentrant sur un rappel élevé des séquences d'objets (rappel au niveau de la piste) ; comprend un modèle d'optimisation basé sur le mécanisme d'attention, qui utilise des fonctionnalités de nuage de points à long terme pour apprendre et prédire différents attributs des objets, notamment des dimensions géométriques affinées, des positions de trajectoire de mouvement fluide et des scores de confiance mis à jour
Nous utilisons le CenterPoint[] public comme détecteur de base Afin de fournir davantage de trames candidates à la détection, nous l'avons amélioré sous trois aspects : (1) Utiliser différentes combinaisons de nuages de points de trame comme entrée pour maximiser les performances sans. réduire les performances ; (2) utiliser les informations de densité du nuage de points pour fusionner les caractéristiques du nuage de points d'origine et les caractéristiques de voxel dans un module en deux étapes afin d'optimiser les résultats des limites de la première étape (3) utiliser l'augmentation des données de l'étape d'inférence (TTA), multi ; -La fusion des résultats du modèle (Ensemble) et d'autres technologies sont utilisées pour améliorer l'adaptabilité du modèle aux environnements complexes. Une stratégie de corrélation en deux étapes est introduite dans le module de suivi hors ligne pour réduire les fausses correspondances. Les cadres sont divisés en groupes élevés et groupes faibles en fonction. à la confiance, et le groupe élevé est les associations mettant à jour les trajectoires existantes, et les trajectoires non mises à jour sont associées aux groupements faibles. Dans le même temps, la longueur de la trajectoire de l'objet peut durer jusqu'à la fin de la séquence, évitant ainsi les problèmes de commutation d'identification. De plus, nous exécuterons l'algorithme de suivi à l'envers pour générer un autre ensemble de trajectoires, les associerons via une similarité de position, et enfin utiliserons la stratégie WBF pour fusionner les trajectoires correctement appariées afin d'améliorer encore l'intégrité du début et de la fin de la séquence. Enfin, pour la séquence d'objets différenciés, le nuage de points correspondant à chaque image est extrait et enregistré ; les cases redondantes non mises à jour et certaines séquences plus courtes seront directement fusionnées dans la sortie finale sans optimisation en aval.
2.2 Module d'optimisation d'objets basé sur la prédiction d'attributsDe même, grâce à la précision du cadre de détection et à l'intégrité de la séquence de suivi des objets, nous avons obtenu la première performance au classement de suivi Waymo 3D avec 75,05 MOTA (L2).
Classement de suivi Waymo 3D, * indique la soumission anonyme des résultatsAfin de mieux vérifier le rôle de chaque module que nous avons proposé, nous avons mené une expérience d'ablation sur l'ensemble de vérification Waymo et adopté un seuil IoU plus strict comme norme de mesure
Vérifié dans Waymo Nous Nous avons effectué cette opération sur les véhicules et les piétons et avons sélectionné la valeur standard (0,7 et 0,5) et la valeur stricte (0,8 et 0,6) pour le seuil IoU. Dans le même temps, pour le même ensemble de résultats de détection, nous avons sélectionné le tracker et l'optimisation. Le modèle en 3DAL et DetZero respectivement. Une vérification de combinaison croisée a été effectuée, et les résultats ont en outre prouvé que le tracker et l'optimiseur de DetZero fonctionnaient mieux et que la combinaison des deux présentait de plus grands avantages.
Expériences de validation croisée de différentes combinaisons de modules en amont et en aval, les indices 1 et 2 représentent respectivement 3DAL et DetZero, et l'indicateur est 3D APHNotre tracker hors ligne accorde plus d'attention à l'intégrité de la séquence d'objets, bien que le Les performances MOTA des deux sont différentes. C'est petit, mais les performances de Recall@track sont l'une des raisons de la grande différence dans les performances d'optimisation finale
Comparaison des performances du tracker hors ligne (Trk2) et du tracker 3DAL (Trk1), performances de MOTA et Recall@trackDe plus, cela est démontré par rapport à d'autres trackers de pointe
Recall@track est le rappel de séquence traité par l'algorithme de suivi, 3D APH est la performance finale traitée par le même modèle d'optimisation 3.3 Performances de généralisationAfin de vérifier si des résultats d'annotation automatique de haute qualité peuvent remplacer le manuel les résultats des annotations ont été utilisés pour la formation de modèles en ligne et nous avons effectué une vérification d'apprentissage semi-supervisée sur l'ensemble de vérification Waymo. Nous avons sélectionné au hasard 10 % des données de formation comme données de formation pour le modèle d'enseignant (DetZero) et effectué une inférence sur les 90 % de données restantes pour obtenir des résultats d'annotation automatique, qui seront utilisés comme étiquettes pour le modèle d'étudiant. Nous avons choisi CenterPoint à image unique comme modèle étudiant. Sur la catégorie véhicule, les résultats de l'entraînement utilisant 90% d'étiquettes automatiques et 10% d'étiquettes vraies sont proches des résultats de l'entraînement utilisant 100% d'étiquettes vraies, tandis que sur la catégorie piéton, les résultats du modèle entraîné avec des étiquettes automatiques sont déjà meilleurs. que ceux d'origine. Le résultat, qui montre que l'étiquetage automatique peut être utilisé pour la formation de modèles en ligne
Résultats expérimentaux semi-supervisés sur l'ensemble de validation Waymo3.5 Résultats visualisésLa première ligne représente les résultats d'entrée en amont, la deuxième ligne représente les résultats de sortie du modèle d'optimisation et les objets entre les lignes pointillées représentent les emplacements où la différence est évidente. avant et après optimisation
Lien original : https://mp.weixin.qq.com/s/HklBecJfMOUCC8gclo-t7Q
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!