


Comment utiliser Django Prophet pour la prévision de la charge électrique ?
Comment utiliser Django Prophet pour la prévision de la charge électrique ?
Avec le développement rapide du secteur de l'énergie, la prévision de la charge électrique devient de plus en plus importante. Une prévision précise de la charge électrique est cruciale pour que les compagnies d'électricité puissent planifier la capacité d'alimentation électrique, répartir de manière rationnelle les équipements de production d'électricité et optimiser les opérations du système électrique.
Dans cet article, nous présenterons comment utiliser la bibliothèque Django Prophet pour la prévision de la charge électrique. Django Prophet est une bibliothèque de prédiction open source basée sur Python. Elle combine des statistiques et des méthodes d'apprentissage automatique pour prédire avec précision les données de séries chronologiques.
Tout d’abord, nous devons installer la bibliothèque Django Prophet. Il peut être installé via la commande pip. La commande spécifique est la suivante :
pip install django-prophet
Une fois l'installation terminée, nous devons ajouter le contenu suivant au fichier settings.py du projet Django :
INSTALLED_APPS = [ ... 'prophet', ]
Ensuite, nous avons besoin pour préparer les données pour la prévision de la charge de puissance. Supposons que nous ayons un fichier CSV contenant des données de temps et de charge électrique. Les données peuvent être lues à l'aide de la bibliothèque pandas.
import pandas as pd data = pd.read_csv('load_data.csv')
Après avoir lu les données, nous devons prétraiter les données. Tout d’abord, convertissez la colonne d’heure au format de date et définissez-la comme index.
data['time'] = pd.to_datetime(data['time']) data.set_index('time', inplace=True)
Ensuite, nous devons créer un modèle Django Prophet pour la prévision de la charge de puissance. Le code suivant peut être ajouté au fichier views.py :
from django.http import JsonResponse from prophet import Prophet def load_forecast(request): model = Prophet() model.fit(data) future = model.make_future_dataframe(periods=30) # 预测未来30天的负荷 forecast = model.predict(future) forecast_data = forecast[['ds', 'yhat']].tail(30) # 获取最后30天的预测结果 result = forecast_data.to_dict(orient='records') return JsonResponse(result, safe=False)
Dans le code ci-dessus, nous créons un modèle Prophet et utilisons la méthode fit pour ajuster les données. Ensuite, utilisez la méthode make_future_dataframe pour créer un DataFrame contenant l'heure future, ici nous prédisons la charge pour les 30 prochains jours. Enfin, utilisez la méthode prédire pour faire des prédictions.
Ensuite, nous pouvons ajouter le code suivant dans le fichier urls.py pour configurer le routage des URL :
from django.urls import path from . import views urlpatterns = [ ... path('load_forecast/', views.load_forecast, name='load_forecast'), ]
Maintenant, nous pouvons démarrer le service Django et obtenir les résultats de prévision de charge de puissance en accédant à http://localhost:8000/load_forecast/
.
Ce qui précède représente l'ensemble du processus d'utilisation de Django Prophet pour la prévision de la charge électrique. En combinant le framework Web de Django et les capacités de prévision de Prophet, nous pouvons facilement effectuer des prévisions de charge électrique et afficher les résultats sur l'interface Web. Bien entendu, dans les applications pratiques, nous pouvons optimiser davantage les paramètres du modèle pour obtenir des résultats de prédiction plus précis.
J'espère que cet article pourra aider les lecteurs à comprendre comment utiliser Django Prophet pour la prévision de la charge de puissance et à trouver des applications utiles dans des applications pratiques. Merci d'avoir lu!
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Les applications du monde réel de Python incluent l'analyse des données, le développement Web, l'intelligence artificielle et l'automatisation. 1) Dans l'analyse des données, Python utilise des pandas et du matplotlib pour traiter et visualiser les données. 2) Dans le développement Web, les cadres Django et Flask simplifient la création d'applications Web. 3) Dans le domaine de l'intelligence artificielle, Tensorflow et Pytorch sont utilisés pour construire et former des modèles. 4) En termes d'automatisation, les scripts Python peuvent être utilisés pour des tâches telles que la copie de fichiers.

Python est largement utilisé dans les domaines de la science des données, du développement Web et des scripts d'automatisation. 1) Dans la science des données, Python simplifie le traitement et l'analyse des données à travers des bibliothèques telles que Numpy et Pandas. 2) Dans le développement Web, les cadres Django et Flask permettent aux développeurs de créer rapidement des applications. 3) Dans les scripts automatisés, la simplicité de Python et la bibliothèque standard le rendent idéal.

La flexibilité de Python se reflète dans les systèmes de prise en charge et de type dynamique multi-paradigmes, tandis que la facilité d'utilisation provient d'une syntaxe simple et d'une bibliothèque standard riche. 1. Flexibilité: prend en charge la programmation orientée objet, fonctionnelle et procédurale, et les systèmes de type dynamique améliorent l'efficacité de développement. 2. Facilité d'utilisation: La grammaire est proche du langage naturel, la bibliothèque standard couvre un large éventail de fonctions et simplifie le processus de développement.

Python est très favorisé pour sa simplicité et son pouvoir, adaptés à tous les besoins des débutants aux développeurs avancés. Sa polyvalence se reflète dans: 1) Facile à apprendre et à utiliser, syntaxe simple; 2) Bibliothèques et cadres riches, tels que Numpy, Pandas, etc.; 3) Support multiplateforme, qui peut être exécuté sur une variété de systèmes d'exploitation; 4) Convient aux tâches de script et d'automatisation pour améliorer l'efficacité du travail.

Oui, apprenez Python en deux heures par jour. 1. Élaborer un plan d'étude raisonnable, 2. Sélectionnez les bonnes ressources d'apprentissage, 3. Consolider les connaissances apprises par la pratique. Ces étapes peuvent vous aider à maîtriser Python en peu de temps.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

VSCode Windows 64 bits Télécharger
Un éditeur IDE gratuit et puissant lancé par Microsoft

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

MinGW - GNU minimaliste pour Windows
Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.

Version Mac de WebStorm
Outils de développement JavaScript utiles

SublimeText3 Linux nouvelle version
Dernière version de SublimeText3 Linux