recherche
Maisondéveloppement back-endTutoriel PythonQuelle est la différence entre les trames de données et les matrices dans Python Pandas ?

在Python Pandas中,数据帧(data frames)和矩阵(matrices)之间的区别是什么?

Dans cet article, nous allons vous montrer la différence entre dataframe et matrice en python panda.

Les trames de données et les matrices sont toutes deux des structures de données bidimensionnelles. De manière générale, une trame de données peut contenir plusieurs types de données (nombres, caractères, facteurs, etc.), tandis qu'une matrice ne peut stocker qu' un type de données.

Cadres de données en Python

En Python, DataFrame est une structure de données bidimensionnelle, tabulaire et mutable qui peut stocker des données tabulaires contenant des objets de différents types de données. DataFrame a des axes étiquetés en lignes et en colonnes. Les DataFrames sont des outils utiles dans le prétraitement des données car ils fournissent des méthodes de traitement de données précieuses. DataFrame peut également être utilisé pour créer des tableaux croisés dynamiques et tracer des données à l'aide de Matplotlib.

Application Dataframe

  • Les trames de données peuvent effectuer diverses tâches telles que l'ajustement de formules statistiques.

  • Traitement des données (La matrice n'est pas possible, doit d'abord être convertie en trame de données)

  • Convertissez les lignes en colonnes et vice versa, très utile en science des données.

Créer un exemple de bloc de données

Algorithme (étapes)

Voici les algorithmes/étapes à suivre pour effectuer la tâche requise -

  • Utilisez le mot-clé import pour importer les modules pandas, numpy avec des alias.

  • Utilisez la fonction DataFrame() du module pandas pour créer un bloc de données.

  • Imprimez le bloc de données d'entrée.

Exemple

Le programme suivant utilise la fonction DataFrame() pour renvoyer une trame de données -

# importing pandas, numpy modules with alias names
import pandas as pd
import numpy as np

# creating a dataframe
inputDataframe = pd.DataFrame({'Name': ['Virat', 'Rohit', 'Meera', 'Nick', 'Sana'], 'Jobrole': ['Developer', 'Analyst', 'Help Desk', 'Database Developer', 'Finance accountant'], 'Age': [25, 30, 28, 25, 40]})

# displaying the dataframe
print(inputDataframe)

Sortie

Une fois exécuté, le programme ci-dessus générera le résultat suivant -

   Name             Jobrole      Age
0  Virat            Developer    25
1  Rohit            Analyst      30
2  Meera            Help Desk    28
3  Nick  Database   Developer    25
4  Sana  Finance    accountant   40

Matrice en Python

Une matrice est une collection d'ensembles de données homogènes organisés dans une grille rectangulaire bidimensionnelle. Il s'agit d'un tableau m*n avec le même type de données. Il est créé avec une entrée vectorielle. Il existe un nombre fixe de lignes et de colonnes. Python prend en charge diverses opérations arithmétiques telles que l'addition, la soustraction, la multiplication et la division sur Matrix.

Application de la matrice

  • Il est très utile en économie pour calculer des statistiques telles que le PIB (produit intérieur brut) ou le PI (prix par habitant).

  • Il est également utile pour étudier les circuits électriques et électroniques.

  • Imprimez le bloc de données d'entrée.

  • Matrix est utilisé pour la recherche, comme dessiner des graphiques.

  • Ceci est utile en probabilités et en statistiques.

Multiplication de matrice en convertissant la matrice en bloc de données

Algorithme (étapes)

Voici les algorithmes/étapes à suivre pour effectuer la tâche requise -

  • Utilisez le mot-clé import pour importer le module pandas avec un alias.

  • Créez deux variables pour stocker respectivement les deux matrices d'entrée.

  • Créez des dataframes pour les première et deuxième matrices à l'aide de la fonction DataFrame() (Create DataFrame) du module pandas et stockez-les dans des variables séparées. Ces données sont chargées dans les Pandas DataFrames.

  • Imprimez le bloc de données de la matrice d'entrée 1.

  • Imprimez les dimensions (forme) de la matrice d'entrée 1 en appliquant l'attribut shape.

  • Imprimez la trame de données de la matrice d'entrée 2.

  • Imprimez les dimensions (forme) de la matrice d'entrée 2 en appliquant l'attribut shape.

  • Utilisez la fonction dot() pour multiplier les matrices inputMatrix_1 et inputMatrix_2 et créez une variable pour la stocker.

  • Imprimez la matrice résultat de la multiplication des matrices inputMatrix_1 et inputMatrix_2.

  • Imprimez les dimensions (forme) de la matrice résultante en appliquant l'attribut shape.

Exemple

Le programme suivant utilise la fonction DataFrame() pour renvoyer une trame de données -

# importing pandas module
import pandas as pd

# input matrix 1
inputMatrix_1 = [[1, 2, 2],
   [1,  2, 0],
   [1,  0, 2]]

# input matrix 2
inputMatrix_2 = [[1, 0, 1],
   [2, 1, 1],
   [2, 1, 2]]

# creating a dataframe of first matrix
#(here data is loaded into a pandas DataFrames)
df_1 = pd.DataFrame(data=inputMatrix_1)

# creating a dataframe of second matrix
df_2 = pd.DataFrame(data=inputMatrix_2)

# printing the dataframe of input matrix 1
print("inputMatrix_1:")
print(df_1)

# printing the dimensions(shape) of input matrix 1
print("The dimensions(shape) of input matrix 1:")
print(df_1.shape)
print()

# printing the dataframe of input matrix 2
print("inputMatrix_2:")
print(df_2)

# printing the dimensions(shape) of input matrix 1
print("The dimensions(shape) of input matrix 2:")
print(df_2.shape)
print()

# multiplying both the matrices inputMatrix_1 and inputMatrix_2
result_mult = df_1.dot(df_2)

# Printing the resultant of matrix multiplication of inputMatrix_1 and inputMatrix_2
print("Resultant Matrix after Matrix multiplication:")
print(result_mult)

# printing the dimensions(shape) of resultant Matrix
print("The dimensions(shape) of Resultant Matrix:")
print(result_mult.shape)

Sortie

inputMatrix_1:
0 1 2
0 1 2 2
1 1 2 0
2 1 0 2
The dimensions(shape) of input matrix 1:
(3, 3)

inputMatrix_2:
0 1 2
0 1 0 1
1 2 1 1
2 2 1 2
The dimensions(shape) of input matrix 2:
(3, 3)

Resultant Matrix after Matrix multiplication:
0 1 2
0 9 4 7
1 5 2 3
2 5 2 5
The dimensions(shape) of Resultant Matrix:
(3, 3)

Vous trouverez ci-dessous le tableau des différences entre la matrice et le bloc de données.

Matrice et cadre de données

Matrice Cadre de données
Il s'agit d'un ensemble d'ensembles de données disposés dans une organisation rectangulaire bidimensionnelle Il stocke des tableaux de données avec plusieurs types de données dans plusieurs colonnes appelées champs.
La matrice est un tableau m*n avec le même type de données Une trame de données est une liste de vecteurs de même longueur. Une trame de données est une forme généralisée de matrice.
Une matrice a un nombre fixe de lignes et de colonnes. Le nombre de lignes et de colonnes de Dataframe est variable.
Homogène Hétérogène

Conclusion

Nous avons découvert la différence entre la matrice et le bloc de données en Python dans cette application. Nous avons également appris à créer un bloc de données et à convertir une matrice en bloc de données.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Cet article est reproduit dans:. en cas de violation, veuillez contacter admin@php.cn Supprimer
Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante?Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante?Apr 18, 2025 am 12:22 AM

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python pour le développement Web: applications clésPython pour le développement Web: applications clésApr 18, 2025 am 12:20 AM

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

Python vs. C: Explorer les performances et l'efficacitéPython vs. C: Explorer les performances et l'efficacitéApr 18, 2025 am 12:20 AM

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python en action: exemples du monde réelPython en action: exemples du monde réelApr 18, 2025 am 12:18 AM

Les applications du monde réel de Python incluent l'analyse des données, le développement Web, l'intelligence artificielle et l'automatisation. 1) Dans l'analyse des données, Python utilise des pandas et du matplotlib pour traiter et visualiser les données. 2) Dans le développement Web, les cadres Django et Flask simplifient la création d'applications Web. 3) Dans le domaine de l'intelligence artificielle, Tensorflow et Pytorch sont utilisés pour construire et former des modèles. 4) En termes d'automatisation, les scripts Python peuvent être utilisés pour des tâches telles que la copie de fichiers.

Les principales utilisations de Python: un aperçu completLes principales utilisations de Python: un aperçu completApr 18, 2025 am 12:18 AM

Python est largement utilisé dans les domaines de la science des données, du développement Web et des scripts d'automatisation. 1) Dans la science des données, Python simplifie le traitement et l'analyse des données à travers des bibliothèques telles que Numpy et Pandas. 2) Dans le développement Web, les cadres Django et Flask permettent aux développeurs de créer rapidement des applications. 3) Dans les scripts automatisés, la simplicité de Python et la bibliothèque standard le rendent idéal.

Le but principal de Python: flexibilité et facilité d'utilisationLe but principal de Python: flexibilité et facilité d'utilisationApr 17, 2025 am 12:14 AM

La flexibilité de Python se reflète dans les systèmes de prise en charge et de type dynamique multi-paradigmes, tandis que la facilité d'utilisation provient d'une syntaxe simple et d'une bibliothèque standard riche. 1. Flexibilité: prend en charge la programmation orientée objet, fonctionnelle et procédurale, et les systèmes de type dynamique améliorent l'efficacité de développement. 2. Facilité d'utilisation: La grammaire est proche du langage naturel, la bibliothèque standard couvre un large éventail de fonctions et simplifie le processus de développement.

Python: la puissance de la programmation polyvalentePython: la puissance de la programmation polyvalenteApr 17, 2025 am 12:09 AM

Python est très favorisé pour sa simplicité et son pouvoir, adaptés à tous les besoins des débutants aux développeurs avancés. Sa polyvalence se reflète dans: 1) Facile à apprendre et à utiliser, syntaxe simple; 2) Bibliothèques et cadres riches, tels que Numpy, Pandas, etc.; 3) Support multiplateforme, qui peut être exécuté sur une variété de systèmes d'exploitation; 4) Convient aux tâches de script et d'automatisation pour améliorer l'efficacité du travail.

Apprendre le python en 2 heures par jour: un guide pratiqueApprendre le python en 2 heures par jour: un guide pratiqueApr 17, 2025 am 12:05 AM

Oui, apprenez Python en deux heures par jour. 1. Élaborer un plan d'étude raisonnable, 2. Sélectionnez les bonnes ressources d'apprentissage, 3. Consolider les connaissances apprises par la pratique. Ces étapes peuvent vous aider à maîtriser Python en peu de temps.

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Vous avez un jeu croisé?
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

Version Mac de WebStorm

Version Mac de WebStorm

Outils de développement JavaScript utiles

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

DVWA

DVWA

Damn Vulnerable Web App (DVWA) est une application Web PHP/MySQL très vulnérable. Ses principaux objectifs sont d'aider les professionnels de la sécurité à tester leurs compétences et leurs outils dans un environnement juridique, d'aider les développeurs Web à mieux comprendre le processus de sécurisation des applications Web et d'aider les enseignants/étudiants à enseigner/apprendre dans un environnement de classe. Application Web sécurité. L'objectif de DVWA est de mettre en pratique certaines des vulnérabilités Web les plus courantes via une interface simple et directe, avec différents degrés de difficulté. Veuillez noter que ce logiciel

Dreamweaver Mac

Dreamweaver Mac

Outils de développement Web visuel