Maison >développement back-end >C++ >Programme C++ pour trouver le nombre de matrices uniques pouvant être générées en échangeant des lignes et des colonnes

Programme C++ pour trouver le nombre de matrices uniques pouvant être générées en échangeant des lignes et des colonnes

WBOY
WBOYavant
2023-09-01 11:53:041032parcourir

Programme C++ pour trouver le nombre de matrices uniques pouvant être générées en échangeant des lignes et des colonnes

Supposons que nous ayons une matrice n x n. Chaque élément de la matrice est unique et est un entier compris entre 1 et n2. Nous pouvons désormais effectuer les opérations suivantes en n’importe quel nombre et dans n’importe quel ordre.

  • Nous choisissons deux entiers x et y dans la matrice où (1 ≤ x

  • Nous choisissons deux entiers x et y dans la matrice où (1 ≤ x

  • Il faut noter que x + y ≤ k et ces valeurs ne peuvent pas apparaître dans la même ligne et colonne.

Nous devons connaître le nombre de matrices uniques qui peuvent être obtenues en effectuant l'opération.

Donc, si l'entrée est quelque chose comme n = 3, k = 15, mat = {{4, 3, 6}, {5, 9, 7}, {1, 2, 8}}, alors la sortie sera 36.

Par exemple, les deux valeurs choisies sont x = 3 et y = 5. Si vous échangez les colonnes, la matrice résultante sera -

3 4 6
9 5 7
2 1 8

De cette façon, vous pouvez obtenir 36 matrices uniques de ce type.

Pour résoudre ce problème, nous suivrons les étapes suivantes -

Define a function dfs(), this will take k, arrays ver and visited, one stack s.
   if visited[k] is non-zero, then:
      return
   visited[k] := true
   insert k into s
   for initialize iterator j := start of ver[k], when j is not equal to last element of ver[k], update (increase j by 1), do:
      dfs(*j, ver, visited, s)
Define an array f of size: 51.
f[0] := 1
for initialize i := 1, when i <= 50, update (increase i by 1), do:
   f[i] := (i * f[i - 1]) mod modval
Define an array e of size n
Define an array pk of size n
for initialize i := 0, when i < n, update (increase i by 1), do:
   for initialize j := i + 1, when j < n, update (increase j by 1), do:
      chk := 0
         for initialize l := 0, when l < n, update (increase l by 1), do:
            if (mat[i, l] + mat[j, l]) > k, then:
               chk := 1
               Come out from the loop
         if chk is same as 0, then:
             insert j at the end of pk[i]
             insert i at the end of pk[j]
          chk := 0
          for initialize l := 0, when l < n, update (increase l by 1), do:
             if (mat[l, i] + mat[l, j]) > k, then:
                chk := 1
                Come out from the loop
           if chk is same as 0, then:
               insert j at the end of e[i]
               insert i at the end of e[j]
resa := 1, resb = 1
Define an array v1 of size: n and v2 of size: n.
for initialize i := 0, when i < n, update (increase i by 1), do:
   v1[i] := false
   v2[i] := false
for initialize i := 0, when i < n, update (increase i by 1), do:
   Define one stack s.
   if not v1[i] is non-zero, then:
      dfs(i, pk, v1, s)
      if not s is empty, then:
         resa := resa * (f[size of s])
         resa := resa mod modval
for initialize i := 0, when i < n, update (increase i by 1), do:
   Define one stack s
   if not v2[i] is non-zero, then:
      dfs(i, e, v2, s)
      if not s is empty, then:
         resb := resb * (f[size of s])
         resb := resb mod modval
print((resa * resb) mod modval)

Exemple

Voyons l'implémentation suivante pour une meilleure compréhension -

#include <bits/stdc++.h>
using namespace std;
#define modval 998244353
const int INF = 1e9;
void dfs(int k, vector<int> ver[], bool visited[], stack<int> &s) {
   if(visited[k])
      return;
   visited[k] = true;
   s.push(k);
   for(vector<int> :: iterator j = ver[k].begin(); j!=ver[k].end(); j++)
      dfs(*j, ver, visited, s);
}
void solve(int n, int k, vector<vector<int>> mat) {
   int f[51];
   f[0] = 1;
   for(int i = 1; i <= 50; i++) {
      f[i] = (i * f[i-1]) % modval;
   }
   vector<int> e[n];
   vector<int> pk[n];
   for(int i = 0; i < n; i++) {
      for(int j = i + 1;j < n; j++) {
         int chk = 0;
         for(int l = 0; l < n; l++){
            if((mat[i][l] + mat[j][l]) > k) {
               chk = 1;
               break;
            }
         }
         if(chk==0) {
            pk[i].push_back(j);
            pk[j].push_back(i);
         }
         chk = 0;
         for(int l = 0;l < n; l++) {
            if((mat[l][i] + mat[l][j]) > k){
               chk = 1;
               break;
            }
         }
         if(chk == 0) {
            e[i].push_back(j);
            e[j].push_back(i);
        }
      }
   }
   int resa = 1, resb = 1;
   bool v1[n], v2[n];
   for(int i = 0; i < n; i++) {
      v1[i] = false;
      v2[i] = false;
   }
   for(int i = 0;i < n; i++) {
      stack<int> s;
      if(!v1[i]) {
         dfs(i, pk, v1, s);
         if(!s.empty()) {
             resa *= (f[s.size()]) % modval;
             resa %= modval;
         }
      }
   }
   for(int i = 0 ;i < n; i++) {
      stack<int> s;
      if(!v2[i]){
         dfs(i, e, v2, s);
         if(!s.empty()) {
           resb *= (f[s.size()]) % modval;
            resb %= modval;
         }
      }
   }
   cout<< (resa * resb) % modval;
}
int main() {
   int n = 3, k = 15;
   vector<vector<int>> mat = {{4, 3, 6}, {5, 9, 7}, {1, 2, 8}};
   solve(n, k, mat);
   return 0;
}

Input

3, 15, {{4, 3, 6}, {5, 9, 7}, {1, 2, 8}}

Output

36

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Cet article est reproduit dans:. en cas de violation, veuillez contacter admin@php.cn Supprimer