Maison  >  Article  >  Périphériques technologiques  >  Bibliothèques PHP et OpenCV : Comment implémenter la reconnaissance faciale

Bibliothèques PHP et OpenCV : Comment implémenter la reconnaissance faciale

php中文网课程
php中文网课程original
2023-07-19 15:03:551397parcourir
La reconnaissance faciale est une méthode qui utilise la technologie de vision par ordinateur pour identifier et vérifier automatiquement les visages. Dans cet article, nous implémenterons la reconnaissance faciale à l'aide des bibliothèques PHP et OpenCV. Nous présenterons l'installation de la bibliothèque OpenCV, l'installation de l'extension PHP et les étapes détaillées de la reconnaissance faciale à l'aide de PHP et de la bibliothèque OpenCV.

Bibliothèques PHP et OpenCV : Comment implémenter la reconnaissance faciale

Préparation

Avant de commencer, nous devons installer certains logiciels et extensions nécessaires.

1. Installez la bibliothèque OpenCV

Tout d'abord, nous devons installer la bibliothèque OpenCV.Voici les étapes pour installer la bibliothèque OpenCV sur le système Ubuntu :
Ouvrez un terminal et exécutez la commande suivante pour installer les dépendances nécessaires :
sudo apt-get update
sudo apt-get install build-essential cmake
sudo apt-get install libgtk2.0-dev libjpeg-dev libtiff5-dev libjasper-dev libopenexr-dev libavcodec-dev libavformat-dev libswscale-dev libv4l-dev libxvidcore-dev libx264-dev libatlas-base-dev gfortran python2.7-dev python3.6-dev
Téléchargez le code source OpenCV et décompressez-le :
wget -O opencv.zip https://github.com/opencv/opencv/archive/4.2.0.zip
unzip opencv.zip
Créer a Répertoire compilé :
mkdir buildcd build
Utilisez CMake pour générer les fichiers compilés :
cmake -D CMAKE_BUILD_TYPE=RELEASE -D CMAKE_INSTALL_PREFIX=/usr/local ..
Compilez et installez OpenCV :
make -j4
sudo make install
sudo ldconfig

2. Installez l'extension PHP

Après avoir installé la bibliothèque OpenCV, nous devons installer l'extension PHP pour qu'en PHP, utilisez la bibliothèque OpenCV.以下是在Ubuntu系统上安装PHP扩展的步骤:
安装PHP开发工具:
sudo apt-get install php7.4-dev
安装PECL工具:
sudo apt-get install php-pear
使用PECL安装OpenCV扩展:
sudo pecl install opencv
php.ini文件中添加OpenCV扩展:
extension=opencv.so
重启PHP:
sudo service apache2 restart

人脸检测

在安装和配置好所有必要的软件和扩展后,我们可以开始使用PHP和OpenCV进行人脸识别。以下是人脸检测的步骤:
1、创建一个PHP文件(例如index.php)。
2、导入OpenCV命名空间:
use \OpenCV\{
  CvImage,
  CvVideoCapture,
  CvWindow,
  CvFont,
  CvScalar};
3、创建一个函数来进行人脸检测:
function detectFace($inputImage){
  // 加载人脸识别器和级联分类器  $faceCascade = new \OpenCV\CascadeClassifier();
  $faceCascade->load('/path/to/haarcascade_frontalface_default.xml');

  // 加载输入图像  $image = new CvImage();
  $image->load($inputImage);

  // 将图像转换为灰度图像  $grayImage = $image->clone();
  $grayImage->toGray();

  // 检测人脸  $faces = $faceCascade->detectMultiScale($grayImage);

  // 在图像中绘制人脸矩形框  $rectColor = new CvScalar(0, 255, 0);
  foreach ($faces as $face) {
    $image->rectangle(
      $face->getX(),
      $face->getY(),
      $face->getX() + $face->getWidth(),
      $face->getY() + $face->getHeight(),
      $rectColor,
      2    );
  }

  // 在新窗口中显示图像  $window = new CvWindow('Face Detection');
  $window->showImage($image);
  $window->waitKey();
}
4、调用detectFace函数并传入要检测的图像路径:
detectFace('/path/to/input/image.jpg');

人脸识别

在人脸检测的基础上,我们可以进一步实现人脸识别。以下是实现人脸识别的步骤:
1、创建一个包含人脸图像和类别标签的训练数据集。每个人脸图像都应该有一个唯一的标签。
2、训练一个基于人脸数据集的人脸识别模型。以下是一个训练模型的示例:
function trainModel($trainingDataPath){
  // 加载训练数据集  $images = [];
  $labels = [];
  $labelsMap = [];

  foreach (glob($trainingDataPath . '/*') as $dir) {
    $label = basename($dir);
    $labelsMap[] = $label;

    foreach (glob($dir . '/*.jpg') as $file) {
      $images[] = CvImage::load($file);
      $labels[] = count($labelsMap) - 1;
    }
  }

  // 创建人脸识别模型  $model = new \OpenCV\Face\FisherFaceRecognizer();
  $model->train($images, $labels);

  // 保存模型  $model->save('/path/to/fisher_model.yml');

  // 保存标签映射  file_put_contents('/path/to/labels.txt', implode(PHP_EOL, $labelsMap));
}
3、创建一个函数来进行人脸识别:
function recognizeFace($inputImage){
  // 加载人脸识别模型  $model = new \OpenCV\Face\FisherFaceRecognizer();
  $model->load('/path/to/fisher_model.yml');

  // 加载标签映射  $labelsMap = file('/path/to/labels.txt', FILE_IGNORE_NEW_LINES);

  // 加载输入图像  $image = CvImage::load($inputImage);
  $grayImage = $image->clone();
  $grayImage->toGray();

  // 检测人脸  $faceCascade = new \OpenCV\CascadeClassifier();
  $faceCascade->load('/path/to/haarcascade_frontalface_default.xml');
  $faces = $faceCascade->detectMultiScale($grayImage);

  // 遍历所有检测到的人脸  foreach ($faces as $face) {
    // 提取人脸区域    $faceImage = $grayImage->getROI($face->getX(), $face->getY(), $face->getWidth(), $face->getHeight());

    // 识别人脸    $predictedLabel = $model->predict($faceImage);

    // 在图像中绘制识别结果    $font = new CvFont();
    $font->scale(1);
    $font->color(new CvScalar(0, 255, 0));
    $image->putText(
      $labelsMap[$predictedLabel],
      new CvPoint($face->getX(), $face->getY() - 10),
      $font
    );
    $image->rectangle(
      $face->getX(),
      $face->getY(),
      $face->getX() + $face->getWidth(),
      $face->getY() + $face->getHeight(),
      new CvScalar(0, 255, 0),
      2    );
  }

  // 在新窗口中显示图像  $window = new CvWindow('Face Recognition');
  $window->showImage($image);
  $window->waitKey();
}
4、调用recognizeFace函数并传入要识别的图像路径:
recognizeFace('/path/to/input/image.jpg');

总结

在本文中,我们介绍了使用PHP和OpenCV库实现人脸识别的详细步骤。我们首先安装了OpenCV库和PHP扩展,然后通过组合OpenCV的人脸检测和人脸识别功能,实现了人脸识别的应用。我们提供了具体的代码示例,并附带了安装教程,以帮助读者快速上手。希望这篇文章能够帮助您了解如何使用PHP和OpenCV库来实现人脸识别。

Recommandation d'apprentissage PHP :

Vue3+Laravel8+Uniapp novice au tutoriel de développement pratique
Vue3+TP6+API enseignement du développement de systèmes de commerce électronique social
swoole cours recommandés de l'entrée au master
« Workerman+TP6 Instant Messaging Chat System » est en vente pour une durée limitée !

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn