recherche
Maisondéveloppement back-endTutoriel PythonUtilisez Python pour vous connecter à Tencent Cloud afin de réaliser des fonctions de reconnaissance faciale et de détection d'activité en temps réel

Utilisez Python pour vous connecter à Tencent Cloud afin d'obtenir des fonctions de reconnaissance faciale et de détection d'activité en temps réel

Résumé : Avec le développement rapide de l'intelligence artificielle et de la vision par ordinateur, la reconnaissance faciale a été largement utilisée dans divers domaines. Cet article expliquera comment utiliser le langage Python pour s'interfacer avec l'interface Tencent Cloud afin d'obtenir des fonctions de reconnaissance faciale et de détection d'activité en temps réel. En appelant l'API de reconnaissance faciale fournie par Tencent Cloud, nous pouvons détecter, reconnaître et détecter en direct les visages dans l'image.

Mots clés : Python, Tencent Cloud, reconnaissance faciale, détection d'activité, API

1. Introduction
La technologie de reconnaissance faciale a été largement utilisée dans divers domaines tels que le déverrouillage facial et le paiement facial. La fonction de détection d'activité peut éviter les attaques photo ou vidéo, offrant ainsi une sécurité accrue. Tencent Cloud fournit une série d'API de reconnaissance faciale et de détection d'activité pour permettre aux développeurs de les intégrer et de les utiliser rapidement. Cet article expliquera comment utiliser le langage Python pour se connecter à l'API de reconnaissance faciale de Tencent Cloud et implémenter des fonctions de reconnaissance faciale et de détection d'activité en temps réel.

2. Configuration et préparation de l'environnement

  1. Enregistrez un compte Tencent Cloud et activez le service d'interface de reconnaissance faciale.
  2. Installez l'environnement de développement Python.
  3. Installez les requêtes de la bibliothèque de requêtes Python et exécutez la commande pip install request sur la ligne de commande.

3. Appelez l'API de reconnaissance faciale Tencent Cloud pour la détection des visages
Tout d'abord, nous devons obtenir la clé API fournie par Tencent Cloud pour authentifier notre demande. Ensuite, nous pouvons utiliser la bibliothèque de requêtes de Python pour envoyer des requêtes HTTP et recevoir les résultats renvoyés par Tencent Cloud.

Exemple de code :

import requests
import json

url = "https://api.ai.qq.com/fcgi-bin/face/face_detectface"
app_id = "your_app_id"
app_key = "your_app_key"

image_path = "path_to_your_image"

# 将图像文件转换为字节流
image_data = open(image_path, "rb").read()

# 构建请求参数
payload = {
    "app_id": app_id,
    "time_stamp": str(int(time.time())),
    "nonce_str": str(random.randint(1, 10000)),
    "image": base64.b64encode(image_data).decode('utf-8'),
}

# 根据参数构建签名字符串
sign_str = "&".join([f"{k}={payload[k]}" for k in sorted(payload.keys())]) + f"&app_key={app_key}"
payload["sign"] = hashlib.md5(sign_str.encode('utf-8')).hexdigest().upper()

# 发送POST请求
response = requests.post(url, data=payload)

# 解析返回结果
result = json.loads(response.text)

Dans le code ci-dessus, vous devez remplacer "your_app_id" et "your_app_key" par les valeurs correspondantes que vous avez demandées sur Tencent Cloud. "image_path" doit être remplacé par le chemin du fichier de l'image que vous souhaitez détecter. En envoyant une requête HTTP POST, nous pouvons obtenir les résultats de détection de visage renvoyés par Tencent Cloud.

4. Utilisez l'API Tencent Cloud pour la détection d'activité
Avant d'effectuer la détection d'activité, nous devons effectuer une détection de visage pour obtenir l'emplacement et les informations sur les points clés du visage. Effectuez ensuite une détection de corps en direct basée sur l'API fournie par Tencent Cloud.

Exemple de code :

def liveness_detection(image_path):
    face_result = detect_face(image_path)
    if not face_result["data"]["face_list"]:
        print("No face detected.")
        return

    image_data = open(image_path, "rb").read()
    image_base64 = base64.b64encode(image_data).decode("utf-8")

    url = "https://api.ai.qq.com/fcgi-bin/face/face_livedetectfour"
    app_id = "your_app_id"
    app_key = "your_app_key"

    payload = {
        "app_id": app_id,
        "time_stamp": str(int(time.time())),
        "nonce_str": str(random.randint(1, 10000)),
        "image": image_base64,
        "face_id": face_result["data"]["face_list"][0]["face_id"]
    }
    sign_str = "&".join([f"{k}={payload[k]}" for k in sorted(payload.keys())]) + f"&app_key={app_key}"
    payload["sign"] = hashlib.md5(sign_str.encode("utf-8")).hexdigest().upper()

    response = requests.post(url, data=payload)
    result = json.loads(response.text)
    print(result)

Dans le code ci-dessus, vous devez remplacer "your_app_id" et "your_app_key" par les valeurs correspondantes que vous avez demandées sur Tencent Cloud. Grâce à la fonction detector_face, nous pouvons obtenir le face_id du visage humain, puis effectuer une détection de vivacité basée sur le face_id.

5. Résumé et Outlook
Cet article présente comment utiliser l'interface Python et Tencent Cloud pour implémenter les fonctions de reconnaissance faciale et de détection d'activité. En appelant l'API fournie par Tencent Cloud, nous pouvons détecter et identifier les visages dans les images, et également mettre en œuvre des fonctions de détection en direct. À l'avenir, grâce au développement continu de la technologie de reconnaissance faciale, nous pourrons l'appliquer à davantage de domaines et apporter plus de commodité et de sécurité à la vie des gens.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Quels types de données peuvent être stockés dans un tableau Python?Quels types de données peuvent être stockés dans un tableau Python?Apr 27, 2025 am 12:11 AM

PythonlistScanstoreanyDatatype, ArrayModulearRaySstoreOneType, et NumpyArraysArnumericalComptations.1) ListesaSaSatilebutlessmemory-Efficient.2) NumpyArraySareMory-EfficientForHomoGeneousData.3)

Que se passe-t-il si vous essayez de stocker une valeur du mauvais type de données dans un tableau Python?Que se passe-t-il si vous essayez de stocker une valeur du mauvais type de données dans un tableau Python?Apr 27, 2025 am 12:10 AM

Lorsque vous vous assumez de la valeur de la valeur de la datyypie de la datyylethonarray.

Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux?Quelle partie fait partie de la bibliothèque standard Python: listes ou tableaux?Apr 27, 2025 am 12:03 AM

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.

Que devez-vous vérifier si le script s'exécute avec la mauvaise version Python?Que devez-vous vérifier si le script s'exécute avec la mauvaise version Python?Apr 27, 2025 am 12:01 AM

TheScriptSrunning withthewrongpythonversionDuetOincorrectDefaultInterpretersettings.tofixThis: 1) vérifiez laefaultpythonversionusingpython - Versionorpython3 - Version.2)

Quelles sont les opérations communes qui peuvent être effectuées sur des tableaux Python?Quelles sont les opérations communes qui peuvent être effectuées sur des tableaux Python?Apr 26, 2025 am 12:22 AM

PythonarRaySSupportVariousOperations: 1) SpecingExtractsSubSets, 2) A SPENDANT / EXPENSEDADDDSELLESS, 3) INSERtingPlaceSelelementsAtSpecific Positions, 4) RemovingdeleteSelements, 5) Sorting / ReversingChangeSes

Dans quels types d'applications les tableaux Numpy sont-ils couramment utilisés?Dans quels types d'applications les tableaux Numpy sont-ils couramment utilisés?Apr 26, 2025 am 12:13 AM

NumpyArraysAressentialFor Applications est en train de réaliser des objets de manière numérique et une datamanipulation.

Quand choisiriez-vous d'utiliser un tableau sur une liste dans Python?Quand choisiriez-vous d'utiliser un tableau sur une liste dans Python?Apr 26, 2025 am 12:12 AM

Useanarray.arrayoveralistinpythonwendealing withhomogeneousdata, performance-criticalcode, orinterfacingwithccode.1) homogeneousdata: ArraySaveMemorywithTypelements.2) performance-criticalcode

Toutes les opérations de liste sont-elles prises en charge par des tableaux, et vice versa? Pourquoi ou pourquoi pas?Toutes les opérations de liste sont-elles prises en charge par des tableaux, et vice versa? Pourquoi ou pourquoi pas?Apr 26, 2025 am 12:05 AM

Non, NotallListOperationsResaSupportedByArrays, andviceVersa.1) ArraysDonotsUpportDynamicOperationsLIKEAPENDORINSERSERTWithoutresizing, qui oblige la performance.2) Listes de la glate-enconteConStanttimecomplexityfordirectAccessLikEArraysDo.

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

VSCode Windows 64 bits Télécharger

VSCode Windows 64 bits Télécharger

Un éditeur IDE gratuit et puissant lancé par Microsoft

SublimeText3 Linux nouvelle version

SublimeText3 Linux nouvelle version

Dernière version de SublimeText3 Linux

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser

mPDF

mPDF

mPDF est une bibliothèque PHP qui peut générer des fichiers PDF à partir de HTML encodé en UTF-8. L'auteur original, Ian Back, a écrit mPDF pour générer des fichiers PDF « à la volée » depuis son site Web et gérer différentes langues. Il est plus lent et produit des fichiers plus volumineux lors de l'utilisation de polices Unicode que les scripts originaux comme HTML2FPDF, mais prend en charge les styles CSS, etc. et présente de nombreuses améliorations. Prend en charge presque toutes les langues, y compris RTL (arabe et hébreu) ​​et CJK (chinois, japonais et coréen). Prend en charge les éléments imbriqués au niveau du bloc (tels que P, DIV),