Maison >développement back-end >Tutoriel Python >Exemples d'analyse de cluster en Python
L'analyse cluster est une méthode d'analyse de données courante qui peut diviser des ensembles de données en différents groupes ou catégories. Python fournit une variété d'algorithmes de clustering et nous pouvons choisir différents algorithmes d'analyse en fonction de différents besoins. Cet article présentera certains algorithmes de clustering couramment utilisés en Python et donnera des exemples d'applications.
1. Algorithme K-Means
L'algorithme K-Means est un algorithme de clustering couramment utilisé qui regroupe les données en fonction de la distance euclidienne. Cet algorithme divise l'ensemble de données en k clusters, où le point central de chaque cluster est la moyenne de tous les membres du cluster. Les étapes spécifiques de l'algorithme sont les suivantes :
Ce qui suit est un exemple Python d'analyse de cluster utilisant l'algorithme K-Means :
import numpy as np from sklearn.cluster import KMeans from sklearn.datasets import make_blobs import matplotlib.pyplot as plt # 生成随机数据 X, y = make_blobs(n_samples=300, centers=4, random_state=42) # 运行 K-Means 算法 kmeans = KMeans(n_clusters=4, random_state=42) y_pred = kmeans.fit_predict(X) # 绘制聚类结果 plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("K-Means Clustering") plt.show()
Dans le code ci-dessus, la fonction make_blobs est utilisée pour générer un ensemble de données contenant 300 points d'échantillonnage, contenant un total de 4 clusters. Utilisez ensuite la fonction KMeans pour effectuer le clustering, spécifiez le nombre de clusters sur 4 et obtenez le résultat de la classification de chaque point de données via la méthode fit_predict. Enfin, utilisez Matplotlib pour tracer les résultats du clustering.
2. Algorithme de clustering hiérarchique
L'algorithme de clustering hiérarchique est un algorithme de clustering ascendant qui fusionne progressivement les données en clusters plus grands en fonction de la similarité des données. Les étapes spécifiques de cet algorithme sont les suivantes :
Ce qui suit est un exemple Python d'utilisation d'un algorithme de clustering hiérarchique pour l'analyse de cluster :
from sklearn.cluster import AgglomerativeClustering from sklearn.datasets import make_moons import matplotlib.pyplot as plt # 生成随机数据 X, y = make_moons(n_samples=200, noise=0.05, random_state=42) # 运行层次聚类算法 agglomerative = AgglomerativeClustering(n_clusters=2) y_pred = agglomerative.fit_predict(X) # 绘制聚类结果 plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("Agglomerative Clustering") plt.show()
Dans le code ci-dessus, la fonction make_moons est utilisée pour générer un ensemble de données contenant 200 points d'échantillonnage, et la fonction AgglomerativeClustering est utilisée pour le clustering, en spécifiant que le nombre de clusters est 2. Enfin, utilisez Matplotlib pour tracer les résultats du clustering.
3. Algorithme DBSCAN
L'algorithme DBSCAN est un algorithme de clustering basé sur la densité qui peut diviser les points de données en différents clusters en fonction de la densité de l'ensemble de données. Les étapes spécifiques de l'algorithme sont les suivantes :
Ce qui suit est un exemple Python d'utilisation de l'algorithme DBSCAN pour l'analyse de cluster :
from sklearn.cluster import DBSCAN from sklearn.datasets import make_moons import matplotlib.pyplot as plt # 生成随机数据 X, y = make_moons(n_samples=200, noise=0.05, random_state=42) # 运行 DBSCAN 算法 dbscan = DBSCAN(eps=0.2, min_samples=5) y_pred = dbscan.fit_predict(X) # 绘制聚类结果 plt.scatter(X[:, 0], X[:, 1], c=y_pred) plt.title("DBSCAN Clustering") plt.show()
Dans le code ci-dessus, la fonction make_moons est utilisée pour générer un ensemble de données contenant 200 points d'échantillonnage, et la fonction DBSCAN est utilisée pour le clustering, en précisant le rayon et le nombre minimum d’échantillons. Enfin, utilisez Matplotlib pour tracer les résultats du clustering.
Résumé
Cet article présente trois algorithmes de clustering couramment utilisés en Python et donne des exemples d'applications correspondants. Les algorithmes de clustering sont une méthode d'analyse de données très utile qui peut nous aider à découvrir des modèles et des relations cachés dans les données. Dans les applications pratiques, nous pouvons choisir différents algorithmes d’analyse en fonction des caractéristiques et des besoins des données.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!