recherche
Maisondéveloppement back-endTutoriel PythonComment utiliser les techniques de netteté d'image en Python ?

La netteté de l'image est une technique de traitement d'image couramment utilisée qui peut rendre les images plus claires et plus détaillées. En Python, nous pouvons utiliser certaines bibliothèques de traitement d'image courantes pour implémenter des fonctions de netteté d'image. Cet article explique comment utiliser la bibliothèque Pillow, la bibliothèque OpenCV et la bibliothèque Scikit-Image en Python pour la netteté des images.

  1. Utilisez la bibliothèque Pillow pour la netteté des images

La bibliothèque Pillow est une bibliothèque de traitement d'image couramment utilisée en Python, qui fournit une version améliorée de PIL (Python Image Library). La bibliothèque Pillow peut être utilisée pour lire et traiter différents types d'images, telles que JPG, PNG, BMP, etc. Les étapes pour utiliser la bibliothèque Pillow pour la netteté de l'image sont les suivantes :

1) Installez la bibliothèque Pillow

Entrez la commande suivante sur la ligne de commande pour installer la bibliothèque Pillow :

pip install Pillow

2) Lisez l'image

Utilisez le Module Image de la bibliothèque Pillow pour lire l'image. Par exemple, on peut lire une image nommée "test.jpg" :

from PIL import Image

image = Image.open('test.jpg')

3) Améliorer la netteté de l'image

Utilisez le module Filtre de la bibliothèque Pillow pour effectuer des opérations de netteté. Vous pouvez utiliser des filtres tels que le flou, l'amélioration des contours et l'amélioration de la netteté. Ici, nous utilisons le filtre UnsharpMask pour améliorer la netteté de l'image :

from PIL import ImageFilter

sharpened_image = image.filter(ImageFilter.UnsharpMask(radius=2, percent=150, threshold=3))

Dans le code ci-dessus, le paramètre radius spécifie le rayon de flou, le paramètre percent spécifie le pourcentage de netteté et le paramètre seuil spécifie le seuil de netteté.

4) Enregistrez le résultat

Enfin, utilisez la méthode save() pour enregistrer le résultat sous forme d'une nouvelle image :

sharpened_image.save('sharpened_test.jpg')
  1. Utilisez la bibliothèque OpenCV pour la netteté de l'image

La bibliothèque OpenCV est une bibliothèque de vision par ordinateur open source disponible pour diverses tâches de traitement d’image. Les étapes pour utiliser la bibliothèque OpenCV pour la netteté de l'image sont les suivantes :

1) Installez la bibliothèque OpenCV

Entrez la commande suivante sur la ligne de commande pour installer la bibliothèque OpenCV :

pip install opencv-python

2) Lisez l'image

Utilisez le Fonction imread() de la bibliothèque OpenCV pour lire Prendre des photos. Par exemple, on peut lire une image nommée "test.jpg" :

import cv2

image = cv2.imread('test.jpg')

3) Améliorer la netteté de l'image

Utilisez la fonction Laplacienne de la bibliothèque OpenCV pour améliorer la netteté de l'image. Le code est le suivant :

import cv2

kernel_size = 3
scale = 1
delta = 0
ddepth = cv2.CV_16S

gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (3, 3), 0)
dst = cv2.Laplacian(gray, ddepth, ksize=kernel_size, scale=scale, delta=delta)
absdst = cv2.convertScaleAbs(dst)

Dans le code ci-dessus, le paramètre kernel_size spécifie la taille de l'opérateur, le paramètre scale spécifie le facteur de mise à l'échelle, le paramètre delta spécifie le décalage et le paramètre ddegree spécifie la profondeur de sortie.

4) Enregistrez le résultat

Enfin, utilisez la fonction imwrite() pour enregistrer le résultat sous forme d'une nouvelle image :

cv2.imwrite('sharpened_test.jpg', absdst)
  1. Utilisez la bibliothèque Scikit-Image pour la netteté de l'image

La bibliothèque Scikit-Image est un Python Bibliothèque de traitement d'image qui fournit divers algorithmes de traitement d'image. Les étapes pour utiliser la bibliothèque Scikit-Image pour la netteté de l'image sont les suivantes :

1) Installez la bibliothèque Scikit-Image

Entrez la commande suivante dans la ligne de commande pour installer la bibliothèque Scikit-Image :

pip install scikit-image

2) Lire l'image

Utilisez Scikit- Le module io de la bibliothèque d'images lit les images. Par exemple, on peut lire une image nommée "test.jpg" :

from skimage import io

image = io.imread('test.jpg')

3) Améliorer la netteté de l'image

Utilisez le module de transformation de la bibliothèque Scikit-Image pour effectuer l'opération de netteté. Ici, nous utilisons la fonction unsharp_mask() pour améliorer la netteté de l'image :

from skimage import filters

sharpened_image = filters.unsharp_mask(image, radius=2, amount=1.5, multichannel=True)

Dans le code ci-dessus, le paramètre radius spécifie la taille du noyau de convolution, le paramètre montant spécifie le degré de netteté et le paramètre multicanal spécifie si c'est une image en couleur.

4) Enregistrez le résultat

Enfin, utilisez la fonction imsave() du module io pour enregistrer le résultat sous une nouvelle image :

io.imsave('sharpened_test.jpg', sharpened_image)

Conclusion

Cet article présente l'utilisation de la bibliothèque Pillow, de la bibliothèque OpenCV et de Scikit -Méthode Image dans la bibliothèque Python pour la netteté de l'image. Ces bibliothèques fournissent divers algorithmes et fonctions pour traiter les images, que nous pouvons choisir d'utiliser en fonction de nos besoins. La netteté de l’image est une partie importante du traitement de l’image. Elle peut améliorer la qualité et la clarté des images et offre de larges perspectives d’application dans des applications pratiques.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante?Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante?Apr 18, 2025 am 12:22 AM

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python pour le développement Web: applications clésPython pour le développement Web: applications clésApr 18, 2025 am 12:20 AM

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

Python vs. C: Explorer les performances et l'efficacitéPython vs. C: Explorer les performances et l'efficacitéApr 18, 2025 am 12:20 AM

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Python en action: exemples du monde réelPython en action: exemples du monde réelApr 18, 2025 am 12:18 AM

Les applications du monde réel de Python incluent l'analyse des données, le développement Web, l'intelligence artificielle et l'automatisation. 1) Dans l'analyse des données, Python utilise des pandas et du matplotlib pour traiter et visualiser les données. 2) Dans le développement Web, les cadres Django et Flask simplifient la création d'applications Web. 3) Dans le domaine de l'intelligence artificielle, Tensorflow et Pytorch sont utilisés pour construire et former des modèles. 4) En termes d'automatisation, les scripts Python peuvent être utilisés pour des tâches telles que la copie de fichiers.

Les principales utilisations de Python: un aperçu completLes principales utilisations de Python: un aperçu completApr 18, 2025 am 12:18 AM

Python est largement utilisé dans les domaines de la science des données, du développement Web et des scripts d'automatisation. 1) Dans la science des données, Python simplifie le traitement et l'analyse des données à travers des bibliothèques telles que Numpy et Pandas. 2) Dans le développement Web, les cadres Django et Flask permettent aux développeurs de créer rapidement des applications. 3) Dans les scripts automatisés, la simplicité de Python et la bibliothèque standard le rendent idéal.

Le but principal de Python: flexibilité et facilité d'utilisationLe but principal de Python: flexibilité et facilité d'utilisationApr 17, 2025 am 12:14 AM

La flexibilité de Python se reflète dans les systèmes de prise en charge et de type dynamique multi-paradigmes, tandis que la facilité d'utilisation provient d'une syntaxe simple et d'une bibliothèque standard riche. 1. Flexibilité: prend en charge la programmation orientée objet, fonctionnelle et procédurale, et les systèmes de type dynamique améliorent l'efficacité de développement. 2. Facilité d'utilisation: La grammaire est proche du langage naturel, la bibliothèque standard couvre un large éventail de fonctions et simplifie le processus de développement.

Python: la puissance de la programmation polyvalentePython: la puissance de la programmation polyvalenteApr 17, 2025 am 12:09 AM

Python est très favorisé pour sa simplicité et son pouvoir, adaptés à tous les besoins des débutants aux développeurs avancés. Sa polyvalence se reflète dans: 1) Facile à apprendre et à utiliser, syntaxe simple; 2) Bibliothèques et cadres riches, tels que Numpy, Pandas, etc.; 3) Support multiplateforme, qui peut être exécuté sur une variété de systèmes d'exploitation; 4) Convient aux tâches de script et d'automatisation pour améliorer l'efficacité du travail.

Apprendre le python en 2 heures par jour: un guide pratiqueApprendre le python en 2 heures par jour: un guide pratiqueApr 17, 2025 am 12:05 AM

Oui, apprenez Python en deux heures par jour. 1. Élaborer un plan d'étude raisonnable, 2. Sélectionnez les bonnes ressources d'apprentissage, 3. Consolider les connaissances apprises par la pratique. Ces étapes peuvent vous aider à maîtriser Python en peu de temps.

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌
Will R.E.P.O. Vous avez un jeu croisé?
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Version Mac de WebStorm

Version Mac de WebStorm

Outils de développement JavaScript utiles

SublimeText3 Linux nouvelle version

SublimeText3 Linux nouvelle version

Dernière version de SublimeText3 Linux

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire

SublimeText3 version anglaise

SublimeText3 version anglaise

Recommandé : version Win, prend en charge les invites de code !

Adaptateur de serveur SAP NetWeaver pour Eclipse

Adaptateur de serveur SAP NetWeaver pour Eclipse

Intégrez Eclipse au serveur d'applications SAP NetWeaver.