Maison  >  Article  >  base de données  >  Comment Redis+Caffeine implémente les composants de cache distribués de deuxième niveau

Comment Redis+Caffeine implémente les composants de cache distribués de deuxième niveau

WBOY
WBOYavant
2023-05-30 23:10:58907parcourir

Le cache dit de deuxième niveau

Le cache consiste à lire les données à partir d'un support à lecture plus lente et à les placer sur un support à lecture plus rapide, tel qu'un disque -> mémoire.

Habituellement, nous stockons les données sur disque, comme une base de données. Si vous lisez la base de données à chaque fois, la vitesse de lecture sera affectée par les E/S du disque lui-même, il existe donc un cache mémoire comme Redis. Les données peuvent être lues et mises en mémoire, de sorte que lorsque les données doivent être obtenues, les données peuvent être renvoyées directement depuis la mémoire, ce qui peut considérablement améliorer la vitesse.
Mais généralement redis est déployé séparément dans un cluster, il y aura donc une consommation d'E/S réseau. Bien que la connexion avec le cluster redis dispose déjà d'outils tels que des pools de connexions, il y aura quand même une certaine consommation de transmission de données. Il existe donc un cache en cours de processus, comme la caféine. Lorsque le cache intégré à l'application contient des données qualifiées, il peut être utilisé directement sans avoir à les obtenir de Redis via le réseau. Cela forme un cache à deux niveaux. Le cache intégré à l'application est appelé cache de premier niveau et le cache distant (tel que Redis) est appelé cache de deuxième niveau.

  • Le système doit-il mettre en cache l'utilisation du processeur : Si certaines applications doivent consommer beaucoup de processeur pour calculer et obtenir des résultats.

  • Si votre pool de connexions à la base de données est relativement inactif, vous ne devez pas utiliser le cache pour occuper les ressources IO de la base de données. Pensez à utiliser la mise en cache lorsque le pool de connexions à la base de données est occupé ou signale fréquemment des avertissements concernant des connexions insuffisantes.

Avantages du cache distribué de deuxième niveau

Redis est utilisé pour stocker des données chaudes, et les données qui ne sont pas dans Redis sont directement accessibles depuis la base de données.
Nous avons déjà Redis, pourquoi avons-nous encore besoin de connaître les caches de processus tels que Guava et Caffeine :

  • Si Redis n'est pas disponible, nous ne pouvons accéder qu'à Dans la base de données à l'heure actuelle, il est facile de provoquer une avalanche, mais cela n'arrive généralement pas.

  • L'accès à Redis entraînera une certaine surcharge d'E/S réseau et de sérialisation et de désérialisation. Bien que les performances soient très élevées, elles ne sont pas aussi rapides que la méthode locale après tout. . Il peut convertir les données les plus chaudes. Les données sont stockées localement pour accélérer encore l'accès. Cette idée n'est pas propre à notre architecture Internet. Nous utilisons des caches multiniveaux L1, L2 et L3 dans les systèmes informatiques pour réduire l'accès direct à la mémoire et ainsi accélérer l'accès.

Donc, si nous utilisons simplement Redis, il peut répondre à la plupart de nos besoins, mais lorsque nous devons rechercher des performances et une disponibilité plus élevées, nous devons en apprendre davantage sur plusieurs mise en cache de niveau.

Description du processus de lecture des données du processus d'opération de cache de niveau 2

Comment Redis+Caffeine implémente les composants de cache distribués de deuxième niveau

Lorsque ni Redis ni le cache local ne peuvent interroger la valeur, il déclenchera le processus de mise à jour. L'ensemble du processus est une description du processus d'invalidation du cache verrouillé

Comment Redis+Caffeine implémente les composants de cache distribués de deuxième niveau

redis la mise à jour et la suppression des clés de cache seront déclenchées. cache redis#🎜🎜 #

Comment utiliser les composants ?

Le composant est modifié en fonction du framework Spring Cache. Pour utiliser le cache distribué dans le projet, il vous suffit d'ajouter : cacheManager = "L2_CacheManager", ou cacheManager = CacheRedisCaffeineAutoConfiguration #. 🎜🎜#
//这个方法会使用分布式二级缓存来提供查询
@Cacheable(cacheNames = CacheNames.CACHE_12HOUR, cacheManager = "L2_CacheManager")
public Config getAllValidateConfig() { 
}

Si vous souhaitez utiliser à la fois le cache distribué et les composants de cache distribué de deuxième niveau, vous devez alors injecter un bean @Primary CacheManager dans Spring

@Primary
@Bean("deaultCacheManager")
public RedisCacheManager cacheManager(RedisConnectionFactory factory) {
    // 生成一个默认配置,通过config对象即可对缓存进行自定义配置
    RedisCacheConfiguration config = RedisCacheConfiguration.defaultCacheConfig();
    // 设置缓存的默认过期时间,也是使用Duration设置
    config = config.entryTtl(Duration.ofMinutes(2)).disableCachingNullValues();

    // 设置一个初始化的缓存空间set集合
    Set<String> cacheNames =  new HashSet<>();
    cacheNames.add(CacheNames.CACHE_15MINS);
    cacheNames.add(CacheNames.CACHE_30MINS);

    // 对每个缓存空间应用不同的配置
    Map<String, RedisCacheConfiguration> configMap = new HashMap<>();
    configMap.put(CacheNames.CACHE_15MINS, config.entryTtl(Duration.ofMinutes(15)));
    configMap.put(CacheNames.CACHE_30MINS, config.entryTtl(Duration.ofMinutes(30)));
  
    // 使用自定义的缓存配置初始化一个cacheManager
    RedisCacheManager cacheManager = RedisCacheManager.builder(factory)
        .initialCacheNames(cacheNames)  // 注意这两句的调用顺序,一定要先调用该方法设置初始化的缓存名,再初始化相关的配置
        .withInitialCacheConfigurations(configMap)
        .build();
    return cacheManager;
}

Alors :#🎜🎜 #

//这个方法会使用分布式二级缓存
@Cacheable(cacheNames = CacheNames.CACHE_12HOUR, cacheManager = "L2_CacheManager")
public Config getAllValidateConfig() {
}

//这个方法会使用分布式缓存
@Cacheable(cacheNames = CacheNames.CACHE_12HOUR)
public Config getAllValidateConfig2() {
}

Méthode d'implémentation du noyau

Le noyau consiste en fait à implémenter l'interface org.springframework.cache.CacheManager et à hériter de org.springframework.cache.support.AbstractValueAdaptingCache, dans le cadre du framework de cache Spring. lecture et écriture du cache.

RedisCaffeineCacheManager implémente l'interface CacheManager

RedisCaffeineCacheManager.class gère principalement les instances de cache, génère les beans de gestion de cache correspondants en fonction de différents CacheNames, puis les place dans une carte.

package com.axin.idea.rediscaffeinecachestarter.support;

import com.axin.idea.rediscaffeinecachestarter.CacheRedisCaffeineProperties;
import com.github.benmanes.caffeine.cache.Caffeine;
import com.github.benmanes.caffeine.cache.stats.CacheStats;
import lombok.extern.slf4j.Slf4j;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.cache.Cache;
import org.springframework.cache.CacheManager;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.util.CollectionUtils;

import java.util.*;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.ConcurrentMap;
import java.util.concurrent.TimeUnit;

@Slf4j
public class RedisCaffeineCacheManager implements CacheManager {

    private final Logger logger = LoggerFactory.getLogger(RedisCaffeineCacheManager.class);

    private static ConcurrentMap<String, Cache> cacheMap = new ConcurrentHashMap<String, Cache>();

    private CacheRedisCaffeineProperties cacheRedisCaffeineProperties;

    private RedisTemplate<Object, Object> stringKeyRedisTemplate;

    private boolean dynamic = true;

    private Set<String> cacheNames;
    {
        cacheNames = new HashSet<>();
        cacheNames.add(CacheNames.CACHE_15MINS);
        cacheNames.add(CacheNames.CACHE_30MINS);
        cacheNames.add(CacheNames.CACHE_60MINS);
        cacheNames.add(CacheNames.CACHE_180MINS);
        cacheNames.add(CacheNames.CACHE_12HOUR);
    }
    public RedisCaffeineCacheManager(CacheRedisCaffeineProperties cacheRedisCaffeineProperties,
                                     RedisTemplate<Object, Object> stringKeyRedisTemplate) {
        super();
        this.cacheRedisCaffeineProperties = cacheRedisCaffeineProperties;
        this.stringKeyRedisTemplate = stringKeyRedisTemplate;
        this.dynamic = cacheRedisCaffeineProperties.isDynamic();
    }

    //——————————————————————— 进行缓存工具 ——————————————————————
    /**
    * 清除所有进程缓存
    */
    public void clearAllCache() {
        stringKeyRedisTemplate.convertAndSend(cacheRedisCaffeineProperties.getRedis().getTopic(), new CacheMessage(null, null));
    }

    /**
    * 返回所有进程缓存(二级缓存)的统计信息
    * result:{"缓存名称":统计信息}
    * @return
    */
    public static Map<String, CacheStats> getCacheStats() {
        if (CollectionUtils.isEmpty(cacheMap)) {
            return null;
        }

        Map<String, CacheStats> result = new LinkedHashMap<>();
        for (Cache cache : cacheMap.values()) {
            RedisCaffeineCache caffeineCache = (RedisCaffeineCache) cache;
            result.put(caffeineCache.getName(), caffeineCache.getCaffeineCache().stats());
        }
        return result;
    }

    //—————————————————————————— core —————————————————————————
    @Override
    public Cache getCache(String name) {
        Cache cache = cacheMap.get(name);
        if(cache != null) {
            return cache;
        }
        if(!dynamic && !cacheNames.contains(name)) {
            return null;
        }

        cache = new RedisCaffeineCache(name, stringKeyRedisTemplate, caffeineCache(name), cacheRedisCaffeineProperties);
        Cache oldCache = cacheMap.putIfAbsent(name, cache);
        logger.debug("create cache instance, the cache name is : {}", name);
        return oldCache == null ? cache : oldCache;
    }

    @Override
    public Collection<String> getCacheNames() {
        return this.cacheNames;
    }

    public void clearLocal(String cacheName, Object key) {
        //cacheName为null 清除所有进程缓存
        if (cacheName == null) {
            log.info("清除所有本地缓存");
            cacheMap = new ConcurrentHashMap<>();
            return;
        }

        Cache cache = cacheMap.get(cacheName);
        if(cache == null) {
            return;
        }

        RedisCaffeineCache redisCaffeineCache = (RedisCaffeineCache) cache;
        redisCaffeineCache.clearLocal(key);
    }

    /**
    * 实例化本地一级缓存
    * @param name
    * @return
    */
    private com.github.benmanes.caffeine.cache.Cache<Object, Object> caffeineCache(String name) {
        Caffeine<Object, Object> cacheBuilder = Caffeine.newBuilder();
        CacheRedisCaffeineProperties.CacheDefault cacheConfig;
        switch (name) {
            case CacheNames.CACHE_15MINS:
                cacheConfig = cacheRedisCaffeineProperties.getCache15m();
                break;
            case CacheNames.CACHE_30MINS:
                cacheConfig = cacheRedisCaffeineProperties.getCache30m();
                break;
            case CacheNames.CACHE_60MINS:
                cacheConfig = cacheRedisCaffeineProperties.getCache60m();
                break;
            case CacheNames.CACHE_180MINS:
                cacheConfig = cacheRedisCaffeineProperties.getCache180m();
                break;
            case CacheNames.CACHE_12HOUR:
                cacheConfig = cacheRedisCaffeineProperties.getCache12h();
                break;
            default:
                cacheConfig = cacheRedisCaffeineProperties.getCacheDefault();
        }
        long expireAfterAccess = cacheConfig.getExpireAfterAccess();
        long expireAfterWrite = cacheConfig.getExpireAfterWrite();
        int initialCapacity = cacheConfig.getInitialCapacity();
        long maximumSize = cacheConfig.getMaximumSize();
        long refreshAfterWrite = cacheConfig.getRefreshAfterWrite();

        log.debug("本地缓存初始化:");
        if (expireAfterAccess > 0) {
            log.debug("设置本地缓存访问后过期时间,{}秒", expireAfterAccess);
            cacheBuilder.expireAfterAccess(expireAfterAccess, TimeUnit.SECONDS);
        }
        if (expireAfterWrite > 0) {
            log.debug("设置本地缓存写入后过期时间,{}秒", expireAfterWrite);
            cacheBuilder.expireAfterWrite(expireAfterWrite, TimeUnit.SECONDS);
        }
        if (initialCapacity > 0) {
            log.debug("设置缓存初始化大小{}", initialCapacity);
            cacheBuilder.initialCapacity(initialCapacity);
        }
        if (maximumSize > 0) {
            log.debug("设置本地缓存最大值{}", maximumSize);
            cacheBuilder.maximumSize(maximumSize);
        }
        if (refreshAfterWrite > 0) {
            cacheBuilder.refreshAfterWrite(refreshAfterWrite, TimeUnit.SECONDS);
        }
        cacheBuilder.recordStats();
        return cacheBuilder.build();
    }
}

RedisCaffeineCache hérite de AbstractValueAdaptingCache

Le noyau est la méthode get et la méthode put.

package com.axin.idea.rediscaffeinecachestarter.support;

import com.axin.idea.rediscaffeinecachestarter.CacheRedisCaffeineProperties;
import com.github.benmanes.caffeine.cache.Cache;
import lombok.Getter;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.cache.support.AbstractValueAdaptingCache;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.util.StringUtils;

import java.time.Duration;
import java.util.HashMap;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.Callable;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.locks.ReentrantLock;

public class RedisCaffeineCache extends AbstractValueAdaptingCache {

    private final Logger logger = LoggerFactory.getLogger(RedisCaffeineCache.class);

    private String name;

    private RedisTemplate<Object, Object> redisTemplate;

    @Getter
    private Cache<Object, Object> caffeineCache;

    private String cachePrefix;

    /**
     * 默认key超时时间 3600s
     */
    private long defaultExpiration = 3600;

    private Map<String, Long> defaultExpires = new HashMap<>();
    {
        defaultExpires.put(CacheNames.CACHE_15MINS, TimeUnit.MINUTES.toSeconds(15));
        defaultExpires.put(CacheNames.CACHE_30MINS, TimeUnit.MINUTES.toSeconds(30));
        defaultExpires.put(CacheNames.CACHE_60MINS, TimeUnit.MINUTES.toSeconds(60));
        defaultExpires.put(CacheNames.CACHE_180MINS, TimeUnit.MINUTES.toSeconds(180));
        defaultExpires.put(CacheNames.CACHE_12HOUR, TimeUnit.HOURS.toSeconds(12));
    }

    private String topic;
    private Map<String, ReentrantLock> keyLockMap = new ConcurrentHashMap();

    protected RedisCaffeineCache(boolean allowNullValues) {
        super(allowNullValues);
    }

    public RedisCaffeineCache(String name, RedisTemplate<Object, Object> redisTemplate,
                              Cache<Object, Object> caffeineCache, CacheRedisCaffeineProperties cacheRedisCaffeineProperties) {
        super(cacheRedisCaffeineProperties.isCacheNullValues());
        this.name = name;
        this.redisTemplate = redisTemplate;
        this.caffeineCache = caffeineCache;
        this.cachePrefix = cacheRedisCaffeineProperties.getCachePrefix();
        this.defaultExpiration = cacheRedisCaffeineProperties.getRedis().getDefaultExpiration();
        this.topic = cacheRedisCaffeineProperties.getRedis().getTopic();
        defaultExpires.putAll(cacheRedisCaffeineProperties.getRedis().getExpires());
    }

    @Override
    public String getName() {
        return this.name;
    }

    @Override
    public Object getNativeCache() {
        return this;
    }

    @Override
    public <T> T get(Object key, Callable<T> valueLoader) {
        Object value = lookup(key);
        if (value != null) {
            return (T) value;
        }
        //key在redis和缓存中均不存在
        ReentrantLock lock = keyLockMap.get(key.toString());

        if (lock == null) {
            logger.debug("create lock for key : {}", key);
            keyLockMap.putIfAbsent(key.toString(), new ReentrantLock());
            lock = keyLockMap.get(key.toString());
        }
        try {
            lock.lock();
            value = lookup(key);
            if (value != null) {
                return (T) value;
            }
            //执行原方法获得value
            value = valueLoader.call();
            Object storeValue = toStoreValue(value);
            put(key, storeValue);
            return (T) value;
        } catch (Exception e) {
            throw new ValueRetrievalException(key, valueLoader, e.getCause());
        } finally {
            lock.unlock();
        }
    }

    @Override
    public void put(Object key, Object value) {
        if (!super.isAllowNullValues() && value == null) {
            this.evict(key);
            return;
        }
        long expire = getExpire();
        logger.debug("put:{},expire:{}", getKey(key), expire);
        redisTemplate.opsForValue().set(getKey(key), toStoreValue(value), expire, TimeUnit.SECONDS);

        //缓存变更时通知其他节点清理本地缓存
        push(new CacheMessage(this.name, key));
        //此处put没有意义,会收到自己发送的缓存key失效消息
//        caffeineCache.put(key, value);
    }

    @Override
    public ValueWrapper putIfAbsent(Object key, Object value) {
        Object cacheKey = getKey(key);
        // 使用setIfAbsent原子性操作
        long expire = getExpire();
        boolean setSuccess;
        setSuccess = redisTemplate.opsForValue().setIfAbsent(getKey(key), toStoreValue(value), Duration.ofSeconds(expire));

        Object hasValue;
        //setNx结果
        if (setSuccess) {
            push(new CacheMessage(this.name, key));
            hasValue = value;
        }else {
            hasValue = redisTemplate.opsForValue().get(cacheKey);
        }

        caffeineCache.put(key, toStoreValue(value));
        return toValueWrapper(hasValue);
    }

    @Override
    public void evict(Object key) {
        // 先清除redis中缓存数据,然后清除caffeine中的缓存,避免短时间内如果先清除caffeine缓存后其他请求会再从redis里加载到caffeine中
        redisTemplate.delete(getKey(key));

        push(new CacheMessage(this.name, key));

        caffeineCache.invalidate(key);
    }

    @Override
    public void clear() {
        // 先清除redis中缓存数据,然后清除caffeine中的缓存,避免短时间内如果先清除caffeine缓存后其他请求会再从redis里加载到caffeine中
        Set<Object> keys = redisTemplate.keys(this.name.concat(":*"));
        for (Object key : keys) {
            redisTemplate.delete(key);
        }

        push(new CacheMessage(this.name, null));
        caffeineCache.invalidateAll();
    }

    /**
     * 取值逻辑
     * @param key
     * @return
     */
    @Override
    protected Object lookup(Object key) {
        Object cacheKey = getKey(key);
        Object value = caffeineCache.getIfPresent(key);
        if (value != null) {
            logger.debug("从本地缓存中获得key, the key is : {}", cacheKey);
            return value;
        }

        value = redisTemplate.opsForValue().get(cacheKey);

        if (value != null) {
            logger.debug("从redis中获得值,将值放到本地缓存中, the key is : {}", cacheKey);
            caffeineCache.put(key, value);
        }
        return value;
    }

    /**
     * @description 清理本地缓存
     */
    public void clearLocal(Object key) {
        logger.debug("clear local cache, the key is : {}", key);
        if (key == null) {
            caffeineCache.invalidateAll();
        } else {
            caffeineCache.invalidate(key);
        }
    }

    //————————————————————————————私有方法——————————————————————————

    private Object getKey(Object key) {
        String keyStr = this.name.concat(":").concat(key.toString());
        return StringUtils.isEmpty(this.cachePrefix) ? keyStr : this.cachePrefix.concat(":").concat(keyStr);
    }

    private long getExpire() {
        long expire = defaultExpiration;
        Long cacheNameExpire = defaultExpires.get(this.name);
        return cacheNameExpire == null ? expire : cacheNameExpire.longValue();
    }

    /**
     * @description 缓存变更时通知其他节点清理本地缓存
     */
    private void push(CacheMessage message) {
        redisTemplate.convertAndSend(topic, message);
    }
}

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Cet article est reproduit dans:. en cas de violation, veuillez contacter admin@php.cn Supprimer