Maison >base de données >Redis >Comment utiliser Java et Redis pour implémenter une simple fonction de recherche à chaud
Possède les fonctions suivantes :
1 : La barre de recherche affiche l'historique de recherche de l'utilisateur individuel actuellement connecté et supprime l'historique personnel
2 : L'utilisateur saisit un caractère dans la barre de recherche et le caractère est enregistré dans Redis stocké au format zset, enregistrez le nombre de recherches du caractère et l'horodatage actuel (l'algorithme DFA est utilisé, si vous êtes intéressé, vous pouvez l'apprendre sur Baidu)
Chaque fois qu'un utilisateur interroge un caractère qui existe déjà dans Redis , le décompte sera accumulé afin que Obtenez les dix données de requête les plus populaires sur la plate-forme. Vous pouvez écrire l'API vous-même ou ajouter des mots-clés dans Redis à l'avance
4 : Enfin, vous devez exécuter la fonction de filtrage de texte indécent. C'est très important, tu sais.
Le code implémente des fonctions de recherche rapide et d'enregistrement de recherche personnelle. Quelques méthodes sous la couche du contrôleur principal suffisent :
1 : Ajoutez des mots de recherche chauds à redis (lors de l'ajout, utilisez la méthode de filtrage de texte indécente suivante pour filtrer ce mot. . Conservez-le une fois qu'il est légal
2 : Chaque clic augmentera la popularité des mots associés de +1
3 : Recherchez les dix premiers mots associés en fonction de la clé
4 : Insérez des enregistrements de recherche personnels
5 : Requête personnelle. rechercher des enregistrements
Configurez d'abord la source de données Redis et d'autres bases
Enfin, collez le code de la couche de service principale :
package com.****.****.****.user; import com.jianlet.service.user.RedisService; import org.apache.commons.lang.StringUtils; import org.springframework.data.redis.core.*; import org.springframework.stereotype.Service; import javax.annotation.Resource; import java.util.*; import java.util.concurrent.TimeUnit; /** * @author: mrwanghc * @date: 2020/5/13 * @description: */ @Transactional @Service("redisService") public class RedisServiceImpl implements RedisService { //导入数据源 @Resource(name = "redisSearchTemplate") private StringRedisTemplate redisSearchTemplate; //新增一条该userid用户在搜索栏的历史记录 //searchkey 代表输入的关键词 @Override public int addSearchHistoryByUserId(String userid, String searchkey) { String shistory = RedisKeyUtils.getSearchHistoryKey(userid); boolean b = redisSearchTemplate.hasKey(shistory); if (b) { Object hk = redisSearchTemplate.opsForHash().get(shistory, searchkey); if (hk != null) { return 1; }else{ redisSearchTemplate.opsForHash().put(shistory, searchkey, "1"); } }else{ redisSearchTemplate.opsForHash().put(shistory, searchkey, "1"); } return 1; } //删除个人历史数据 @Override public Long delSearchHistoryByUserId(String userid, String searchkey) { String shistory = RedisKeyUtils.getSearchHistoryKey(userid); return redisSearchTemplate.opsForHash().delete(shistory, searchkey); } //获取个人历史数据列表 @Override public List<String> getSearchHistoryByUserId(String userid) { List<String> stringList = null; String shistory = RedisKeyUtils.getSearchHistoryKey(userid); boolean b = redisSearchTemplate.hasKey(shistory); if(b){ Cursor<Map.Entry<Object, Object>> cursor = redisSearchTemplate.opsForHash().scan(shistory, ScanOptions.NONE); while (cursor.hasNext()) { Map.Entry<Object, Object> map = cursor.next(); String key = map.getKey().toString(); stringList.add(key); } return stringList; } return null; } //新增一条热词搜索记录,将用户输入的热词存储下来 @Override public int incrementScoreByUserId(String searchkey) { Long now = System.currentTimeMillis(); ZSetOperations zSetOperations = redisSearchTemplate.opsForZSet(); ValueOperations<String, String> valueOperations = redisSearchTemplate.opsForValue(); List<String> title = new ArrayList<>(); title.add(searchkey); for (int i = 0, lengh = title.size(); i < lengh; i++) { String tle = title.get(i); try { if (zSetOperations.score("title", tle) <= 0) { zSetOperations.add("title", tle, 0); valueOperations.set(tle, String.valueOf(now)); } } catch (Exception e) { zSetOperations.add("title", tle, 0); valueOperations.set(tle, String.valueOf(now)); } } return 1; } //根据searchkey搜索其相关最热的前十名 (如果searchkey为null空,则返回redis存储的前十最热词条) @Override public List<String> getHotList(String searchkey) { String key = searchkey; Long now = System.currentTimeMillis(); List<String> result = new ArrayList<>(); ZSetOperations zSetOperations = redisSearchTemplate.opsForZSet(); ValueOperations<String, String> valueOperations = redisSearchTemplate.opsForValue(); Set<String> value = zSetOperations.reverseRangeByScore("title", 0, Double.MAX_VALUE); //key不为空的时候 推荐相关的最热前十名 if(StringUtils.isNotEmpty(searchkey)){ for (String val : value) { if (StringUtils.containsIgnoreCase(val, key)) { if (result.size() > 9) {//只返回最热的前十名 break; } Long time = Long.valueOf(valueOperations.get(val)); if ((now - time) < 2592000000L) {//返回最近一个月的数据 result.add(val); } else {//时间超过一个月没搜索就把这个词热度归0 zSetOperations.add("title", val, 0); } } } }else{ for (String val : value) { if (result.size() > 9) {//只返回最热的前十名 break; } Long time = Long.valueOf(valueOperations.get(val)); if ((now - time) < 2592000000L) {//返回最近一个月的数据 result.add(val); } else {//时间超过一个月没搜索就把这个词热度归0 zSetOperations.add("title", val, 0); } } } return result; } //每次点击给相关词searchkey热度 +1 @Override public int incrementScore(String searchkey) { String key = searchkey; Long now = System.currentTimeMillis(); ZSetOperations zSetOperations = redisSearchTemplate.opsForZSet(); ValueOperations<String, String> valueOperations = redisSearchTemplate.opsForValue(); zSetOperations.incrementScore("title", key, 1); valueOperations.getAndSet(key, String.valueOf(now)); return 1; } }
La partie principale est terminée et le reste doit être intégré par vous-même dans votre propre code. Le code implémente la fonction de filtrage du texte indécent. Écrivez une classe de configuration dans springboot et ajoutez l'annotation @Configuration. Chargez-la au démarrage du projet. Le code est le suivant :
package com.***.***.interceptor; import org.springframework.context.annotation.Configuration; import org.springframework.core.io.ClassPathResource; import java.io.*; import java.util.HashMap; import java.util.HashSet; import java.util.Map; import java.util.Set; //屏蔽敏感词初始化 @Configuration @SuppressWarnings({ "rawtypes", "unchecked" }) public class SensitiveWordInit { // 字符编码 private String ENCODING = "UTF-8"; // 初始化敏感字库 public Map initKeyWord() throws IOException { // 读取敏感词库 ,存入Set中 Set<String> wordSet = readSensitiveWordFile(); // 将敏感词库加入到HashMap中//确定有穷自动机DFA return addSensitiveWordToHashMap(wordSet); } // 读取敏感词库 ,存入HashMap中 private Set<String> readSensitiveWordFile() throws IOException { Set<String> wordSet = null; ClassPathResource classPathResource = new ClassPathResource("static/censorword.txt"); InputStream inputStream = classPathResource.getInputStream(); //敏感词库 try { // 读取文件输入流 InputStreamReader read = new InputStreamReader(inputStream, ENCODING); // 文件是否是文件 和 是否存在 wordSet = new HashSet<String>(); // StringBuffer sb = new StringBuffer(); // BufferedReader是包装类,先把字符读到缓存里,到缓存满了,再读入内存,提高了读的效率。 BufferedReader br = new BufferedReader(read); String txt = null; // 读取文件,将文件内容放入到set中 while ((txt = br.readLine()) != null) { wordSet.add(txt); } br.close(); // 关闭文件流 read.close(); } catch (Exception e) { e.printStackTrace(); } return wordSet; } // 将HashSet中的敏感词,存入HashMap中 private Map addSensitiveWordToHashMap(Set<String> wordSet) { // 初始化敏感词容器,减少扩容操作 Map wordMap = new HashMap(wordSet.size()); for (String word : wordSet) { Map nowMap = wordMap; for (int i = 0; i < word.length(); i++) { // 转换成char型 char keyChar = word.charAt(i); // 获取 Object tempMap = nowMap.get(keyChar); // 如果存在该key,直接赋值 if (tempMap != null) { nowMap = (Map) tempMap; } // 不存在则,则构建一个map,同时将isEnd设置为0,因为他不是最后一个 else { // 设置标志位 Map<String, String> newMap = new HashMap<String, String>(); newMap.put("isEnd", "0"); // 添加到集合 nowMap.put(keyChar, newMap); nowMap = newMap; } // 最后一个 if (i == word.length() - 1) { nowMap.put("isEnd", "1"); } } } return wordMap; } }
Ensuite, voici le code de l'outil :
package com.***.***.interceptor; import java.io.IOException; import java.util.HashSet; import java.util.Iterator; import java.util.Map; import java.util.Set; //敏感词过滤器:利用DFA算法 进行敏感词过滤 public class SensitiveFilter { //敏感词过滤器:利用DFA算法 进行敏感词过滤 private Map sensitiveWordMap = null; // 最小匹配规则 public static int minMatchType = 1; // 最大匹配规则 public static int maxMatchType = 2; // 单例 private static SensitiveFilter instance = null; // 构造函数,初始化敏感词库 private SensitiveFilter() throws IOException { sensitiveWordMap = new SensitiveWordInit().initKeyWord(); } // 获取单例 public static SensitiveFilter getInstance() throws IOException { if (null == instance) { instance = new SensitiveFilter(); } return instance; } // 获取文字中的敏感词 public Set<String> getSensitiveWord(String txt, int matchType) { Set<String> sensitiveWordList = new HashSet<String>(); for (int i = 0; i < txt.length(); i++) { // 判断是否包含敏感字符 int length = CheckSensitiveWord(txt, i, matchType); // 存在,加入list中 if (length > 0) { sensitiveWordList.add(txt.substring(i, i + length)); // 减1的原因,是因为for会自增 i = i + length - 1; } } return sensitiveWordList; } // 替换敏感字字符 public String replaceSensitiveWord(String txt, int matchType, String replaceChar) { String resultTxt = txt; // 获取所有的敏感词 Set<String> set = getSensitiveWord(txt, matchType); Iterator<String> iterator = set.iterator(); String word = null; String replaceString = null; while (iterator.hasNext()) { word = iterator.next(); replaceString = getReplaceChars(replaceChar, word.length()); resultTxt = resultTxt.replaceAll(word, replaceString); } return resultTxt; } /** * 获取替换字符串 * * @param replaceChar * @param length * @return */ private String getReplaceChars(String replaceChar, int length) { String resultReplace = replaceChar; for (int i = 1; i < length; i++) { resultReplace += replaceChar; } return resultReplace; } /** * 检查文字中是否包含敏感字符,检查规则如下:<br> * 如果存在,则返回敏感词字符的长度,不存在返回0 * @param txt * @param beginIndex * @param matchType * @return */ public int CheckSensitiveWord(String txt, int beginIndex, int matchType) { // 敏感词结束标识位:用于敏感词只有1位的情况 boolean flag = false; // 匹配标识数默认为0 int matchFlag = 0; Map nowMap = sensitiveWordMap; for (int i = beginIndex; i < txt.length(); i++) { char word = txt.charAt(i); // 获取指定key nowMap = (Map) nowMap.get(word); // 存在,则判断是否为最后一个 if (nowMap != null) { // 找到相应key,匹配标识+1 matchFlag++; // 如果为最后一个匹配规则,结束循环,返回匹配标识数 if ("1".equals(nowMap.get("isEnd"))) { // 结束标志位为true flag = true; // 最小规则,直接返回,最大规则还需继续查找 if (SensitiveFilter.minMatchType == matchType) { break; } } } // 不存在,直接返回 else { break; } } if (SensitiveFilter.maxMatchType == matchType){ if(matchFlag < 2 || !flag){ //长度必须大于等于1,为词 matchFlag = 0; } } if (SensitiveFilter.minMatchType == matchType){ if(matchFlag < 2 && !flag){ //长度必须大于等于1,为词 matchFlag = 0; } } return matchFlag; } }
Dans le. contrôleur de votre code Le layer peut appeler directement la méthode pour juger :
//非法敏感词汇判断 SensitiveFilter filter = SensitiveFilter.getInstance(); int n = filter.CheckSensitiveWord(searchkey,0,1); if(n > 0){ //存在非法字符 logger.info("这个人输入了非法字符--> {},不知道他到底要查什么~ userid--> {}",searchkey,userid); return null; }
Vous pouvez également remplacer le texte sensible par * et d'autres caractères :
SensitiveFilter filter = SensitiveFilter.getInstance(); String text = "敏感文字"; String x = filter.replaceSensitiveWord(text, 1, "*");
Enfin, le fichier censorword.text a été utilisé dans SensitiveWordInit.java et placé dans le répertoire statique sous le répertoire des ressources de votre projet. , ce fichier est une collection de texte indécent et doit être mis à jour avec l'heure. Ce fichier sera chargé au démarrage du projet
.Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!