Maison >développement back-end >Tutoriel Python >Utilisation de CSV comme outil d'E/S pour les opérations de lecture et d'écriture dans les pandas de traitement de données Python
Le de <code>pandas
IO API
est un ensemble de fonctions reader
de niveau supérieur, telles que pandas.read_csv()
, qui renverront un pandas code>. pandas
的 IO
API
是一组顶层的 reader
函数,比如 pandas.read_csv()
,会返回一个 pandas
对象。
而相应的 writer
函数是对象方法,如 DataFrame.to_csv()
。
注意:后面会用到 StringIO
,请确保导入
# python3 from io import StringIO # python2 from StringIO import StringIO
读取文本文件的主要函数是 read_csv()
read_csv()
接受以下常用参数:
filepath_or_buffer
: 变量
可以是文件路径、文件 URL
或任何带有 read()
函数的对象
sep
: str
,默认 ,
,对于 read_table
是 t
文件分隔符,如果设置为 None
,则 C
引擎无法自动检测分隔符,而 Python
引擎可以通过内置的嗅探器工具自动检测分隔符。
此外,如果设置的字符长度大于 1
,且不是 's+'
,那么该字符串会被解析为正则表达式,且强制使用 Python
解析引擎。
例如 '\r\t'
,但是正则表达式容易忽略文本中的引用数据。
delimiter
: str
, 默认为 None
sep
的替代参数,功能一致
header
: int
或 list
, 默认为 'infer'
用作列名的行号,默认行为是对列名进行推断:
如果未指定 names
参数其行为类似于 header=0
,即从读取的第一行开始推断。
如果设置了 names
,则行为与 header=None
相同。
也可以为 header
设置列表,表示多级列名。如 [0,1,3]
,未指定的行(这里是 2
)将会被跳过,如果 skip_blank_lines=True
,则会跳过空行和注释的行。因此 header=0
并不是代表文件的第一行
names
: array-like
, 默认为 None
需要设置的列名列表,如果文件中不包含标题行,则应显式传递 header=None
,且此列表中不允许有重复值。
index_col
: int
, str
, sequence of int/str
, False
, 默认为 None
用作 DataFrame
的索引的列,可以字符串名称或列索引的形式给出。如果指定了列表,则使用 MultiIndex
注意:index_col=False
可用于强制 pandas
不要将第一列用作索引。例如,当您的文件是每行末尾都带有一个分隔符的错误文件时。
usecols
: 列表或函数, 默认为 None
只读取指定的列。如果是列表,则所有元素都必须是位置(即文件列中的整数索引)或字符串,这些字符串必须与 names
参数提供的或从文档标题行推断出的列名相对应。
列表中的顺序会被忽略,即 usecols=[0, 1]
等价于 [1, 0]
如果是可调用函数,将会根据列名计算,返回可调用函数计算为 True
的名称
In [1]: import pandas as pd In [2]: from io import StringIO In [3]: data = "col1,col2,col3\na,b,1\na,b,2\nc,d,3" In [4]: pd.read_csv(StringIO(data)) Out[4]: col1 col2 col3 0 a b 1 1 a b 2 2 c d 3 In [5]: pd.read_csv(StringIO(data), usecols=lambda x: x.upper() in ["COL1", "COL3"]) Out[5]: col1 col3 0 a 1 1 a 2 2 c 3
使用此参数可以大大加快解析时间并降低内存使用
squeeze
: boolean
, 默认为 False
如果解析的数据只包含一列,那么返回一个 Series
prefix
: str
, 默认为 None
当没有标题时,添加到自动生成的列号的前缀,例如 'X'
表示 X0
, X1
...
mangle_dupe_cols
: boolean
, 默认为 True
writer
correspondante est une méthode objet, telle que DataFrame.to_csv()
. #🎜🎜##🎜🎜#Remarque : StringIO
sera utilisé plus tard, assurez-vous d'importer #🎜🎜#In [6]: data = "col1,col2,col3\na,b,1\na,b,2\nc,d,3" In [7]: pd.read_csv(StringIO(data)) Out[7]: col1 col2 col3 0 a b 1 1 a b 2 2 c d 3 In [8]: pd.read_csv(StringIO(data), skiprows=lambda x: x % 2 != 0) Out[8]: col1 col2 col3 0 a b 2#🎜🎜#1 Fichiers CSV et texte #🎜🎜##🎜🎜# lire La fonction principale des fichiers texte est
read_csv()
#🎜🎜#read_csv()
accepte ce qui suit paramètres communs :# 🎜🎜#filepath_or_buffer
: Variable #🎜🎜#URL
de fichier ou tout objet avec une fonction read()
#🎜🎜#sep
: str
, par défaut ,
, pour read_table
c'est t
#🎜🎜 #Aucun
, le moteur C
ne peut pas détecter automatiquement le délimiteur , et le moteur Python
peut détecter automatiquement les délimiteurs via l'outil de renifleur intégré. #🎜🎜#1
et n'est pas 's+'
, alors le La chaîne sera analysée comme une expression régulière, forçant l'utilisation du moteur d'analyse Python
. #🎜🎜#'\r\t'
, mais les expressions régulières ont tendance à ignorer les données de référence dans le texte. #🎜🎜#delimiter
: str
, la valeur par défaut est Aucun
#🎜🎜#sep
paramètre alternatif, la fonction est la même#🎜🎜#header
: int
ou list
, la valeur par défaut est 'infer' code># 🎜🎜#<ul class=" list-paddingleft-2"><li>#🎜🎜#Le numéro de ligne utilisé comme nom de colonne, le comportement par défaut est de déduire le nom de la colonne : #🎜🎜# li><ul class=" list-paddingleft-2">
<li>#🎜🎜#Si le paramètre <code>names
n'est pas spécifié, le comportement est similaire à header=0
, c'est-à-dire qu'à partir de la première lecture, Line commence l'inférence. #🎜🎜#
names
est défini, le comportement est le même que header=None
. #🎜🎜#header
afin de représenter les noms de colonnes à plusieurs niveaux. Par exemple, [0,1,3]
, les lignes non spécifiées (ici 2
) seront ignorées. Si skip_blank_lines=True
, les lignes vides et les lignes commentées seront ignorées. Donc header=0
ne représente pas la première ligne du fichier#🎜🎜#names
: array- comme
, la valeur par défaut est Aucun
#🎜🎜#header=None
doit être transmis explicitement et aucune valeur en double n'est autorisée dans cette liste. #🎜🎜#index_col
: int
, str
, séquence de int/ str
, False
, la valeur par défaut est Aucun
#🎜🎜#DataFrame
, donnée sous forme de nom de chaîne ou d'index de colonne. Si une liste est spécifiée, utilisez MultiIndex
#🎜🎜#index_col=False
peut être utilisé pour forcer pandas N'utilisez pas la première colonne comme index. Par exemple, lorsque votre fichier est un mauvais fichier avec un délimiteur à la fin de chaque ligne. #🎜🎜#
usecols
: liste ou fonction, la valeur par défaut est Aucun
#🎜🎜#names
ou déduits de la ligne d'en-tête du document correspondante. #🎜🎜#usecols=[0, 1]
est équivalent à [1, 0]#🎜🎜#
True
sera renvoyé#🎜🎜 #compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}#🎜🎜#L'utilisation de ce paramètre peut considérablement accélérer le temps d'analyse et réduire l'utilisation de la mémoire #🎜🎜##🎜🎜#
squeeze
: booléen
, la valeur par défaut est False
#🎜🎜#Série
#🎜🎜#prefix
: str
, la valeur par défaut est Aucun
#🎜 🎜#'X'
signifie X0
, X1
...#🎜🎜#mangle_dupe_cols
: booléen
, la valeur par défaut est True
#🎜🎜#重复的列将被指定为 'X'
,'X.1'
…'X.N'
,而不是 'X'
... 。如果在列中有重复的名称,传递 False
将导致数据被覆盖
dtype
: 类型名或类型字典(column -> type
), 默认为 None
数据或列的数据类型。例如。 {'a':np.float64,'b':np.int32}
engine
: {'c', 'python'}
要使用的解析器引擎。C
引擎更快,而 Python
引擎目前功能更完整
converters
: dict
, 默认为 None
用于在某些列中对值进行转换的函数字典。键可以是整数,也可以是列名
true_values
: list
, 默认为 None
数据值解析为 True
false_values
: list
, 默认为 None
数据值解析为 False
skipinitialspace
: boolean
, 默认为 False
跳过分隔符之后的空格
skiprows
: 整数或整数列表, 默认为 None
在文件开头要跳过的行号(索引为 0
)或要跳过的行数
如果可调用函数,则对索引应用函数,如果返回 True
,则应跳过该行,否则返回 False
In [6]: data = "col1,col2,col3\na,b,1\na,b,2\nc,d,3" In [7]: pd.read_csv(StringIO(data)) Out[7]: col1 col2 col3 0 a b 1 1 a b 2 2 c d 3 In [8]: pd.read_csv(StringIO(data), skiprows=lambda x: x % 2 != 0) Out[8]: col1 col2 col3 0 a b 2
skipfooter
: int
, 默认为 0
需要跳过文件末尾的行数(不支持 C
引擎)
nrows
: int
, 默认为 None
要读取的文件行数,对于读取大文件很有用
memory_map
: boolean
, 默认为 False
如果为 filepath_or_buffer
参数指定了文件路径,则将文件对象直接映射到内存中,然后直接从那里访问数据。使用此选项可以提高性能,因为不再有任何 I/O
开销
na_values
: scalar
, str
, list-like
, dict
, 默认为 None
需要转换为 NA
值的字符串
keep_default_na
: boolean
, 默认为 True
解析数据时是否包含默认的 NaN
值。根据是否传入 na_values
,其行为如下
keep_default_na=True
, 且指定了 na_values
, na_values
将会与默认的 NaN
一起被解析
keep_default_na=True
, 且未指定 na_values
, 只解析默认的 NaN
keep_default_na=False
, 且指定了 na_values
, 只解析 na_values
指定的 NaN
keep_default_na=False
, 且未指定 na_values
, 字符串不会被解析为 NaN
注意:如果 na_filter=False
,那么 keep_default_na
和 na_values
参数将被忽略
na_filter
: boolean
, 默认为 True
检测缺失值标记(空字符串和 na_values
的值)。在没有任何 NA
的数据中,设置 na_filter=False
可以提高读取大文件的性能
skip_blank_lines
: boolean
, 默认为 True
如果为 True
,则跳过空行,而不是解释为 NaN
值
parse_dates
: 布尔值、列表或嵌套列表、字典, 默认为 False
.
如果为 True
-> 尝试解析索引
如果为 [1, 2, 3]
-> 尝试将 1, 2, 3
列解析为分隔的日期
如果为 [[1, 3]]
-> 将 1, 3
列解析为单个日期列
如果为 {'foo': [1, 3]}
-> 将 1, 3
列作为日期并设置列名为 foo
infer_datetime_format
: 布尔值, 默认为 False
如果设置为 True
且设置了 parse_dates
,则尝试推断 datetime
格式以加快处理速度
date_parser
: 函数, 默认为 None
用于将字符串序列转换为日期时间实例数组的函数。默认使用 dateutil.parser.parser
进行转换,pandas
将尝试以三种不同的方式调用 date_parser
传递一个或多个数组(parse_dates
定义的列)作为参数;
将 parse_dates
定义的列中的字符串值连接到单个数组中,并将其传递;
使用一个或多个字符串(对应于 parse_dates
定义的列)作为参数,对每一行调用 date_parser
一次。
dayfirst
: 布尔值, 默认为 False
DD/MM
格式的日期
cache_dates
: 布尔值, 默认为 True
如果为 True
,则使用唯一的、经过转换的日期缓存来应用 datetime
转换。
在解析重复的日期字符串,特别是带有时区偏移量的日期字符串时,可能会显著提高速度。
iterator
: boolean
, 默认为 False
返回 TextFileReader
对象以进行迭代或使用 get_chunk()
来获取块
compression
: {'infer', 'gzip', 'bz2', 'zip', 'xz', None, dict}
, 默认为 'infer'
用于对磁盘数据进行即时解压缩。如果为 "infer"
,则如果 filepath_or_buffer
是文件路径且以 ".gz"
,".bz2"
,".zip"
或 ".xz"
结尾,则分别使用 gzip
,bz2
,zip
或 xz
解压,否则不进行解压缩。
如果使用 "zip"
,则 ZIP
文件必须仅包含一个要读取的数据文件。设置为 None
表示不解压
也可以使用字典的方式,键为 method
的值从 {'zip', 'gzip', 'bz2'}
中选择。例如
compression={'method': 'gzip', 'compresslevel': 1, 'mtime': 1}
thousandsstr
, 默认为 None
数值在千位的分隔符
decimal
: str
, 默认为 '.'
小数点
float_precision
: string
, 默认为 None
指定 C
引擎应该使用哪个转换器来处理浮点值。普通转换器的选项为 None
,高精度转换器的选项为 high
,双向转换器的选项为 round_trip
。
quotechar
: str
(长度为 1
)
用于表示被引用数据的开始和结束的字符。带引号的数据里的分隔符将被忽略
comment
: str
, 默认为 None
用于跳过该字符开头的行,例如,如果 comment='#'
,将会跳过 #
开头的行
encoding
: str
, 默认为 None
设置编码格式
error_bad_linesboolean
, 默认为 True
默认情况下,字段太多的行(例如,带有太多逗号的 csv
文件)会引发异常,并且不会返回任何 DataFrame
。
如果设置为 False
,则这些坏行将会被删除
warn_bad_linesboolean
, 默认为 True
如果 error_bad_lines=False
且 warn_bad_lines=True
,每个坏行都会输出一个警告
您可以指示整个 DataFrame
或各列的数据类型
In [9]: import numpy as np In [10]: data = "a,b,c,d\n1,2,3,4\n5,6,7,8\n9,10,11" In [11]: print(data) a,b,c,d 1,2,3,4 5,6,7,8 9,10,11 In [12]: df = pd.read_csv(StringIO(data), dtype=object) In [13]: df Out[13]: a b c d 0 1 2 3 4 1 5 6 7 8 2 9 10 11 NaN In [14]: df["a"][0] Out[14]: '1' In [15]: df = pd.read_csv(StringIO(data), dtype={"b": object, "c": np.float64, "d": "Int64"}) In [16]: df.dtypes Out[16]: a int64 b object c float64 d Int64 dtype: object
你可以使用 read_csv()
的 converters
参数,统一某列的数据类型
In [17]: data = "col_1\n1\n2\n'A'\n4.22" In [18]: df = pd.read_csv(StringIO(data), converters={"col_1": str}) In [19]: df Out[19]: col_1 0 1 1 2 2 'A' 3 4.22 In [20]: df["col_1"].apply(type).value_counts() Out[20]: <class 'str'> 4 Name: col_1, dtype: int64
或者,您可以在读取数据后使用 to_numeric()
函数强制转换类型
In [21]: df2 = pd.read_csv(StringIO(data)) In [22]: df2["col_1"] = pd.to_numeric(df2["col_1"], errors="coerce") In [23]: df2 Out[23]: col_1 0 1.00 1 2.00 2 NaN 3 4.22 In [24]: df2["col_1"].apply(type).value_counts() Out[24]: <class 'float'> 4 Name: col_1, dtype: int64
它将所有有效的数值转换为浮点数,而将无效的解析为 NaN
最后,如何处理包含混合类型的列取决于你的具体需要。在上面的例子中,如果您只想要将异常的数据转换为 NaN
,那么 to_numeric()
可能是您的最佳选择。
然而,如果您想要强制转换所有数据,而无论类型如何,那么使用 read_csv()
的 converters
参数会更好
注意
在某些情况下,读取包含混合类型列的异常数据将导致数据集不一致。
如果您依赖 pandas
来推断列的类型,解析引擎将继续推断数据块的类型,而不是一次推断整个数据集。
In [25]: col_1 = list(range(500000)) + ["a", "b"] + list(range(500000)) In [26]: df = pd.DataFrame({"col_1": col_1}) In [27]: df.to_csv("foo.csv") In [28]: mixed_df = pd.read_csv("foo.csv") In [29]: mixed_df["col_1"].apply(type).value_counts() Out[29]: <class 'int'> 737858 <class 'str'> 262144 Name: col_1, dtype: int64 In [30]: mixed_df["col_1"].dtype Out[30]: dtype('O')
这就导致 mixed_df
对于列的某些块包含 int
类型,而对于其他块则包含 str
,这是由于读取的数据是混合类型。
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!