La recherche d'arbres binaires a une efficacité de recherche extrêmement élevée, mais la recherche d'arbres binaires provoquera les situations extrêmes suivantes :
L'efficacité de recherche de ces arbres binaires est encore inférieure à celle des listes chaînées. L'arbre binaire équilibré (arbre AVL) qui apparaît sur la base de l'arbre binaire de recherche résout ce problème. Lorsque la valeur absolue de la différence de hauteur entre les sous-arbres gauche et droit d'un nœud dans un arbre binaire équilibré (arbre AVL) est supérieure à 1, leur différence de hauteur sera réduite grâce à une opération de rotation.
L'arbre AVL est essentiellement un arbre de recherche binaire. Ses caractéristiques sont :
lui-même est avant tout un arbre de recherche binaire
. 二叉搜索树
。
每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1
。也就是说,AVL树,本质上是带了平衡功能
的二叉查找树(二叉排序树,二叉搜索树)。
当插入一个节点或者删除一个节点时,导致某一个节点的左右子树高度差的绝对值大于1,这时需要通过左旋
和右旋
的操作使二叉树再次达到平衡状态。
平衡因子(balanceFactor)
一个结点的左子树与右子树的高度之差
。
AVL树中的任意结点的BF只可能是-1,0和1。
下面是AVL树需要的简单方法和属性:
public class AVLTree <E extends Comparable<E>>{ class Node{ E value; Node left; Node right; int height; public Node(){} public Node(E value){ this.value = value; height = 1; left = null; right = null; } public void display(){ System.out.print(this.value + " "); } } Node root; int size; public int size(){ return size; } public int getHeight(Node node) { if(node == null) return 0; return node.height; } //获取平衡因子(左右子树的高度差,大小为1或者0是平衡的,大小大于1不平衡) public int getBalanceFactor(){ return getBalanceFactor(root); } public int getBalanceFactor(Node node){ if(node == null) return 0; return getHeight(node.left) - getHeight(node.right); } //判断一个树是否是一个平衡二叉树 public boolean isBalance(Node node){ if(node == null) return true; int balanceFactor = Math.abs(getBalanceFactor(node.left) - getBalanceFactor(node.right)); if(balanceFactor > 1) return false; return isBalance(node.left) && isBalance(node.right); } public boolean isBalance(){ return isBalance(root); } //中序遍历树 private void inPrevOrder(Node root){ if(root == null) return; inPrevOrder(root.left); root.display(); inPrevOrder(root.right); } public void inPrevOrder(){ System.out.print("中序遍历:"); inPrevOrder(root); }}
往一个树右子树的右子树上插入一个节点,导致二叉树变得不在平衡,如下图,往平衡二叉树中插入5,导致这个树变得不再平衡,此时需要左旋操作,如下:
代码如下:
//左旋,并且返回新的根节点 public Node leftRotate(Node node){ System.out.println("leftRotate"); Node cur = node.right; node.right = cur.left; cur.left = node; //跟新node和cur的高度 node.height = Math.max(getHeight(node.left),getHeight(node.right)) + 1; cur.height = Math.max(getHeight(cur.left),getHeight(cur.right)) + 1; return cur; }
往一个AVL树左子树的左子树上插入一个节点,导致二叉树变得不在平衡,如下图,往平衡二叉树中插入2,导致这个树变得不再平衡,此时需要左旋操作,如下:
代码如下:
//右旋,并且返回新的根节点 public Node rightRotate(Node node){ System.out.println("rightRotate"); Node cur = node.left; node.left = cur.right; cur.right = node; //跟新node和cur的高度 node.height = Math.max(getHeight(node.left),getHeight(node.right)) + 1; cur.height = Math.max(getHeight(cur.left),getHeight(cur.right)) + 1; return cur; }
往AVL树左子树的右子树
上插入一个节点,导致该树不再平衡,需要先对左子树进行左旋
,再对整棵树右旋
,如下图所示,插入节点为5.
往AVL树右子树的左子树
上插入一个节点,导致该树不再平衡,需要先对右子树进行右旋
,再对整棵树左旋
La valeur absolue (facteur d'équilibre) de la différence de hauteur entre les sous-arbres gauche et droit de chaque nœud est d'au plus 1
. En d'autres termes, l'arbre AVL est essentiellement un arbre de recherche binaire (arbre de tri binaire, arbre de recherche binaire) avec fonction d'équilibre
.
rotation à gauche
et rotation à droite sont nécessaires. L'opération de rotation permet à l'arbre binaire de retrouver un état d'équilibre. <h3></h3>
<strong>Facteur d'équilibre (balanceFactor)</strong>🎜<ul class=" list-paddingleft-2">🎜🎜Le sous-arbre gauche et le sous-arbre droit d'un nœudHauteur différence</ul>
. 🎜🎜🎜Le BF de n'importe quel nœud de l'arborescence AVL ne peut être que -1, 0 et 1.
🎜🎜Conception de base🎜🎜Voici les méthodes et attributs simples requis par l'arborescence AVL : 🎜//添加元素 public void add(E e){ root = add(root,e); } public Node add(Node node, E value) { if (node == null) { size++; return new Node(value); } if (value.compareTo(node.value) > 0) { node.right = add(node.right, value); } else if (value.compareTo(node.value) < 0) { node.left = add(node.left, value); } //跟新节点高度 node.height = Math.max(getHeight(node.left), getHeight(node.right)) + 1; //获取当前节点的平衡因子 int balanceFactor = getBalanceFactor(node); //该子树不平衡且新插入节点(导致不平衡的节点)在左子树的左子树上,此时需要进行右旋 if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0) { return rightRotate(node); } //该子树不平衡且新插入节点(导致不平衡的节点)在右子树子树的右子树上,此时需要进行左旋 else if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0) { return leftRotate(node); } //该子树不平衡且新插入节点(导致不平衡的节点)在左子树的右子树上,此时需要先对左子树左旋,在整个树右旋 else if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) { node.left = leftRotate(node.left); return rightRotate(node); } //balanceFactor < -1 && getBalanceFactor(node.left) > 0 //该子树不平衡且新插入节点(导致不平衡的节点)在右子树的左子树上,此时需要先对右子树右旋,再整个树左旋 else if(balanceFactor < -1 && getBalanceFactor(node.right) > 0) { node.right = rightRotate(node.right); return leftRotate(node); } return node; }🎜RR (rotation à gauche)🎜🎜Insérer dans le sous-arbre droit de la droite sous-arbre d'un arbre Un nœud provoque le déséquilibre de l'arbre binaire. Comme le montre la figure ci-dessous, l'insertion de 5 dans l'arbre binaire équilibré provoque le déséquilibre de l'arbre. À ce stade, une opération de virage à gauche est nécessaire, comme suit : 🎜🎜 Le code est le suivant : 🎜
//删除节点 public E remove(E value){ root = remove(root,value); if(root == null){ return null; } return root.value; } public Node remove(Node node, E value){ Node retNode = null; if(node == null) return retNode; if(value.compareTo(node.value) > 0){ node.right = remove(node.right,value); retNode = node; } else if(value.compareTo(node.value) < 0){ node.left = remove(node.left,value); retNode = node; } //value.compareTo(node.value) = 0 else{ //左右节点都为空,或者左节点为空 if(node.left == null){ size--; retNode = node.right; } //右节点为空 else if(node.right == null){ size--; retNode = node.left; } //左右节点都不为空 else{ Node successor = new Node(); //寻找右子树最小的节点 Node cur = node.right; while(cur.left != null){ cur = cur.left; } successor.value = cur.value; successor.right = remove(node.right,value); successor.left = node.left; node.left = node.right = null; retNode = successor; } if(retNode == null) return null; //维护二叉树平衡 //跟新height retNode.height = Math.max(getHeight(retNode.left),getHeight(retNode.right)); } int balanceFactor = getBalanceFactor(retNode); //该子树不平衡且新插入节点(导致不平衡的节点)在左子树的左子树上,此时需要进行右旋 if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0) { return rightRotate(retNode); } //该子树不平衡且新插入节点(导致不平衡的节点)在右子树子树的右子树上,此时需要进行左旋 else if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0) { return leftRotate(retNode); } //该子树不平衡且新插入节点(导致不平衡的节点)在左子树的右子树上,此时需要先对左子树左旋,在整个树右旋 else if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) { retNode.left = leftRotate(retNode.left); return rightRotate(retNode); } //该子树不平衡且新插入节点(导致不平衡的节点)在右子树的左子树上,此时需要先对右子树右旋,再整个树左旋 else if(balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) { retNode.right = rightRotate(retNode.right); return leftRotate(retNode); } return retNode; }🎜LL (rotation à droite)🎜🎜Vers la gauche d'un arbre AVL L'insertion d'un nœud dans le sous-arbre gauche du sous-arbre provoque un déséquilibre de l'arbre binaire, comme le montre la figure ci-dessous. L'insertion de 2 dans l'arbre binaire équilibré provoque un déséquilibre. l'arbre se déséquilibre A ce moment, une opération de virage à gauche est nécessaire, comme suit : 🎜🎜 Le code est le suivant : 🎜rrreee🎜LR (Tourner à gauche d'abord puis tourner à droite)🎜🎜Insérer un nœud dans le sous-arbre droit du sous-arbre
gauche
de l'arborescence AVL, ce qui entraîne un déséquilibre de l'arbre. Vous devez d'abord effectuer une rotation à gauche sur le sous-arbre gauche
, puis faire pivoter l'arbre entier à droite<.>, comme indiqué dans la figure ci-dessous, insérez le nœud 5.🎜<img src="https://img.php.cn/upload/article/000/465/%20014/168277722832272.jpg" alt="Données Java structure exemple d'analyse de l'arbre AVL">🎜🎜RL (d'abord à droite puis à gauche)🎜🎜Allez au sous-arbre gauche de l'arbre AVL <code>sous-arbre droit
L'insertion d'un nœud provoque le déséquilibre de l'arbre. Vous avez besoin pour faire d'abord pivoter le sous-arbre droit vers la droite
, puis faire pivoter l'arbre entier vers la gauche
Comme le montre la figure ci-dessous, le nœud inséré est 2.🎜🎜🎜. 🎜Ajouter un nœud🎜rrreee🎜Supprimer un nœud🎜rrreeeCe qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!