1.HashSet
implémente l'interface Set
HashSet
实现了 Set
接口
2.HashSet
底层实际上是由 HashMap
实现的
public HashSet() { map = new HashMap<>(); }
3.可以存放 null
,但是只能有一个 null
4.HashSet
不保证元素是有序的(即不保证存放元素的顺序和取出元素的顺序一致),取决于 hash
后,再确定索引的结果
5.不能有重复的元素
HashSet
底层是 HashMap
,HashMap
底层是 数组 + 链表 + 红黑树
/** * 模拟 HashSet 数组+链表的结构 */ public class HashSetStructureMain { public static void main(String[] args) { // 模拟一个 HashSet(HashMap) 的底层结构 // 1. 创建一个数组,数组的类型为 Node[] // 2. 有些地方直接把 Node[] 数组称为 表 Node[] table = new Node[16]; System.out.println(table); // 3. 创建节点 Node john = new Node("john", null); table[2] = jhon; // 把节点 john 放在数组索引为 2 的位置 Node jack = new Node("jack", null); jhon.next = jack; // 将 jack 挂载到 jhon 的后面 Node rose = new Node("rose", null); jack.next = rose; // 将 rose 挂载到 jack 的后面 Node lucy = new Node("lucy", null); table[3] = lucy; // 将 lucy 放在数组索引为 3 的位置 System.out.println(table); } } // 节点类 存储数据,可以指向下一个节点,从而形成链表 class Node{ Object item; // 存放数据 Node next; // 指向下一个节点 public Node(Object item, Node next){ this.item = item; this.next = next; } }
1.HashSet
底层是 HashMap
2.当添加一个元素时,会先得到 待添加元素的 hash
值,然后将其转换成一个 索引值
3.查询存储数据表(Node 数组) table
,看当前 待添加元素 所对应的 索引值 的位置是否已经存放了 其它元素
4.如果当前 索引值 所对应的的位置不存在 其它元素,就将当前 待添加元素 放到这个 索引值 所对应的的位置
5.如果当前 索引值 所对应的位置存在 其它元素,就调用 待添加元素.equals(已存在元素)
比较,结果为 true
,则放弃添加;结果为 false
,则将 待添加元素 放到 已存在元素 的后面(已存在元素.next = 待添加元素
)
1.HashSet
的底层是 HashMap
,第一次添加元素时,table
数组扩容到 cap = 16
,threshold
(临界值) = cap * loadFactor(加载因子 0.75) = 12
2.如果 table
数组使用到了临界值 12,就会扩容到 cap * 2 = 32
,新的临界值就是 32 * 0.75 = 24
,以此类推
3.在 Java8 中,如果一条链表上的元素个数 到达 TREEIFY_THRESHOLD
(默认是 8),并且 table
的大小 >= MIN_TREEIFY_CAPACITY
(默认是 64),就会进行 树化(红黑树)
4.判断是否扩容是根据 ++size > threshold
,即是否扩容,是根据 HashMap
所存的元素个数(size
)是否超过临界值,而不是根据 table.length()
是否超过临界值
/** * HashSet 源码分析 */ public class HashSetSourceMain { public static void main(String[] args) { HashSet hashSet = new HashSet(); hashSet.add("java"); hashSet.add("php"); hashSet.add("java"); System.out.println("set = " + hashSet); // 源码分析 // 1. 执行 HashSet() /** * public HashSet() { // HashSet 底层是 HashMap * map = new HashMap<>(); * } */ // 2. 执行 add() /** * public boolean add(E e) { // e == "java" * // HashSet 的 add() 方法其实是调用 HashMap 的 put()方法 * return map.put(e, PRESENT)==null; // (static) PRESENT = new Object(); 用于占位 * } */ // 3. 执行 put() // hash(key) 得到 key(待存元素) 对应的hash值,并不等于 hashcode() // 算法是 h = key.hashCode()) ^ (h >>> 16 /** * public V put(K key, V value) { * return putVal(hash(key), key, value, false, true); * } */ // 4. 执行 putVal() // 定义的辅助变量:Node<K,V>[] tab; Node<K,V> p; int n, i; // table 是 HashMap 的一个属性,初始化为 null;transient Node<K,V>[] table; // resize() 方法,为 table 数组指定容量 // p = tab[i = (n - 1) & hash] 计算 key的hash值所对应的 table 中的索引位置,将索引位置对应的 Node 赋给 p /** * final V putVal(int hash, K key, V value, boolean onlyIfAbsent, * boolean evict) { * Node<K,V>[] tab; Node<K,V> p; int n, i; // 辅助变量 * // table 就是 HashMap 的一个属性,类型是 Node[] * // if 语句表示如果当前 table 是 null,或者 table.length == 0 * // 就是 table 第一次扩容,容量为 16 * if ((tab = table) == null || (n = tab.length) == 0) * n = (tab = resize()).length; * // 1. 根据 key,得到 hash 去计算key应该存放到 table 的哪个索引位置 * // 2. 并且把这个位置的索引值赋给 i;索引值对应的元素,赋给 p * // 3. 判断 p 是否为 null * // 3.1 如果 p 为 null,表示还没有存放过元素,就创建一个Node(key="java",value=PRESENT),并把这个元素放到 i 的索引位置 * // tab[i] = newNode(hash, key, value, null); * if ((p = tab[i = (n - 1) & hash]) == null) * tab[i] = newNode(hash, key, value, null); * else { * Node<K,V> e; K k; // 辅助变量 * // 如果当前索引位置对应的链表的第一个元素和待添加的元素的 hash值一样 * // 并且满足下面两个条件之一: * // 1. 待添加的 key 与 p 所指向的 Node 节点的key 是同一个对象 * // 2. 待添加的 key.equals(p 指向的 Node 节点的 key) == true * // 就认为当前待添加的元素是重复元素,添加失败 * if (p.hash == hash && * ((k = p.key) == key || (key != null && key.equals(k)))) * e = p; * // 判断 当前 p 是不是一颗红黑树 * // 如果是一颗红黑树,就调用 putTreeVal,来进行添加 * else if (p instanceof TreeNode) * e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); * else { * // 如果 当前索引位置已经形成一个 链表,就使用 for 循环比较 * // 将待添加元素依次和链表上的每个元素进行比较 * // 1. 比较过程中如果出现待添加元素和链表中的元素有相同的,比较结束,出现重复元素,添加失败 * // 2. 如果比较到链表最后一个元素,链表中都没出现与待添加元素相同的,就把当前待添加元素放到该链表最后的位置 * // 注意:在把待添加元素添加到链表后,立即判断 该链表是否已经到达 8 个节点 * // 如果到达,就调用 treeifyBin() 对当前这个链表进行数化(转成红黑树) * // 注意:在转成红黑树前,还要进行判断 * // if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY) * // resize(); * // 如果上面条件成立,先对 table 进行扩容 * // 如果上面条件不成立,才转成红黑树 * for (int binCount = 0; ; ++binCount) { * if ((e = p.next) == null) { * p.next = newNode(hash, key, value, null); * if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st * treeifyBin(tab, hash); * break; * } * if (e.hash == hash && * ((k = e.key) == key || (key != null && key.equals(k)))) * break; * p = e; * } * } * // e 不为 null ,说明添加失败 * if (e != null) { // existing mapping for key * V oldValue = e.value; * if (!onlyIfAbsent || oldValue == null) * e.value = value; * afterNodeAccess(e); * return oldValue; * } * } * ++modCount; * // 扩容:说明判断 table 是否扩容不是看 table 的length * // 而是看 整个 HashMap 的 size(即已存元素个数) * if (++size > threshold) * resize(); * afterNodeInsertion(evict); * return null; * } */ } }
1.HashSet
的底层是 HashMap
,HashSet
的迭代器也是借由 HashMap
来实现的
2.HashSet.iterator()
实际上是去调用 HashMap
的 KeySet().iterator()
public Iterator<E> iterator() { return map.keySet().iterator(); }
3.KeySet()
方法返回一个 KeySet
对象,而 KeySet
是 HashMap
的一个内部类
public Set<K> keySet() { Set<K> ks = keySet; if (ks == null) { ks = new KeySet(); keySet = ks; } return ks; }
4.KeySet().iterator()
方法返回一个 KeyIterator
对象,KeyIterator
是 HashMap
的一个内部类
public final Iterator<K> iterator() { return new KeyIterator(); }
5.KeyIterator
继承了 HashIterator
(HashMap
的内部类) 类,并实现了 Iterator
接口,即 KeyIterator
、HashIterator
才是真正实现 迭代器 的类
final class KeyIterator extends HashIterator implements Iterator<K> { public final K next() { return nextNode().key; } }
6.当执行完 Iterator iterator = HashSet.iterator;
之后,此时的 iterator
对象中已经存储了一个元素节点
怎么做到的?
回到第 4 步,KeySet().iterator()
方法返回一个 KeyIterator
HashSet
La couche inférieure est en fait Il est implémenté par HashMap
🎜/** * Node<K,V> next; // next entry to return * Node<K,V> current; // current entry * int expectedModCount; // for fast-fail * int index; // current slot * HashIterator() { * expectedModCount = modCount; * Node<K,V>[] t = table; * current = next = null; * index = 0; * if (t != null && size > 0) { // advance to first entry * do {} while (index < t.length && (next = t[index++]) == null); * } * } */🎜3. Il peut stocker
null
, mais il ne peut y en avoir qu'un seul null
🎜🎜4.HashSet ne garantit pas que les éléments sont dans l'ordre (c'est-à-dire qu'il ne garantit pas que l'ordre dans lequel les éléments sont stockés est le même que l'ordre dans lequel les éléments sont supprimés). de l'index est déterminé après le hash
🎜🎜5. Il ne peut pas y avoir de doublons. Élément 🎜🎜HashSet description du mécanisme sous-jacent🎜🎜HashSet
La couche inférieure est HashMap
. >, et la couche inférieure de HashMap
est tableau + liste chaînée + arbre rouge-noir🎜public final boolean hasNext() { return next != null; }🎜Le mécanisme sous-jacent de HashSet ajout d'éléments🎜
HashSet
La couche inférieure est HashMap code>🎜🎜2. obtiendra d'abord la valeur <strong>de hachage</strong>
de l'élément à ajouter, puis la convertira en une valeur d'index🎜🎜3 Interrogera la table de données de stockage (tableau de nœuds) true
, alors abandonnez l'ajout ; le résultat est false
, Puis mettez Élément à ajouter après Élément existant (Existing element.next = Élément à ajouter
)🎜HashSet
est HashMap
Lorsqu'un élément est ajouté pour la première fois, le tableau table
est étendu à cap. = 16
, seuil
(valeur critique) = cap * loadFactor (facteur de chargement 0,75) = 12🎜🎜2 Si le tableau table
utilise la valeur critique 12. , Il sera étendu à cap * 2 = 32
, et la nouvelle valeur critique est 32 * 0,75 = 24
, et ainsi de suite🎜🎜3 En Java8, si un. liste chaînée Le nombre d'éléments portée TREEIFY_THRESHOLD
(la valeur par défaut est 8) et la taille de la table
>= MIN_TREEIFY_CAPACITY
(la valeur par défaut est 64), ce sera Arbre (arbre rouge-noir)🎜🎜4. Déterminer s'il faut développer est basé sur le ++seuil de taille
, qui est défini. c'est-à-dire que l'expansion dépend du fait que le nombre d'éléments (size
) stockés dans HashMap
dépasse la valeur critique n'est pas basé sur le fait que table.length()
dépasse la valeur critique🎜/** * HashSet 源码分析 */ public class HashSetSourceMain { public static void main(String[] args) { HashSet hashSet = new HashSet(); hashSet.add("java"); hashSet.add("php"); hashSet.add("java"); System.out.println("set = " + hashSet); // HashSet 迭代器实现原理 // HashSet 底层是 HashMap,HashMap 底层是 数组 + 链表 + 红黑树 // HashSet 本身没有实现迭代器,而是借由 HashMap 来实现的 // 1. hashSet.iterator() 实际上是去调用 HashMap 的 keySet().iterator() /** * public Iterator🎜HashSet traverse le mécanisme sous-jacent des éléments🎜iterator() { * return map.keySet().iterator(); * } */ // 2. KeySet() 方法返回一个 KeySet 对象,而 KeySet 是 HashMap 的一个内部类 /** * public Set keySet() { * Set ks = keySet; * if (ks == null) { * ks = new KeySet(); * keySet = ks; * } * return ks; * } */ // 3. KeySet().iterator() 方法返回一个 KeyIterator 对象,KeyIterator 是 HashMap的一个内部类 /** * public final Iterator<K> iterator() { return new KeyIterator(); } */ // 4. KeyIterator 继承了 HashIterator(HashMap的内部类) 类,并实现了 Iterator 接口 // 即 KeyIterator、HashIterator 才是真正实现 迭代器的类 /** * final class KeyIterator extends HashIterator * implements Iterator { * public final K next() { return nextNode().key; } * } */ // 5. 当执行完 Iterator iterator = hashSet.iterator(); 后 // 此时的 iterator 对象中已经存储了一个元素节点 // 怎么做到的? // 回到第 3 步,KeySet().iterator() 方法返回一个 KeyIterator 对象 // new KeyIterator() 调用 KeyIterator 的无参构造器 // 在这之前,会先调用 KeyIterator 父类 HashIterator 的无参构造器 // 因此分析 HashIterator 的无参构造器就知道发生了什么 /** * Node next; // next entry to return * Node current; // current entry * int expectedModCount; // for fast-fail * int index; // current slot * HashIterator() { * expectedModCount = modCount; * Node [] t = table; * current = next = null; * index = 0; * if (t != null && size > 0) { // advance to first entry * do {} while (index < t.length && (next = t[index++]) == null); * } * } */ // 5.0 next, current, index 都是 HashIterator 的属性 // 5.1 Node [] t = table; 先把 Node 数组 table 赋给 t // 5.2 current = next = null; 把 current 和 next 都置为 null // 5.3 index = 0; index 置为 0 // 5.4 do {} while (index < t.length && (next = t[index++]) == null); // 这个 do{} while 循环会在 table 中 遍历 Node节点 // 一旦 (next = t[index++]) == null 不成立时,就说明找到了一个 table 中的节点 // 将这个节点赋给 next,并退出当前 do while循环 // 此时 Iterator iterator = hashSet.iterator(); 就执行完了 // 当前 iterator 的运行类型其实是 HashIterator,而 HashIterator 的 next 中存储着从 table 中遍历出来的一个 Node节点 // 6. 执行 iterator.hasNext() /** * public final boolean hasNext() { * return next != null; * } */ // 6.1 此时的 next 存储着一个 Node,所以并不为 null,返回 true // 7. 执行 iterator.next(),其实是去执行 HashIterator 的 nextNode() /** * final Node nextNode() { * Node [] t; * Node e = next; * if (modCount != expectedModCount) * throw new ConcurrentModificationException(); * if (e == null) * throw new NoSuchElementException(); * if ((next = (current = e).next) == null && (t = table) != null) { * do {} while (index < t.length && (next = t[index++]) == null); * } * return e; * } */ // 7.1 Node e = next; 把当前存储着 Node 节点的 next 赋值给了 e // 7.2 (next = (current = e).next) == null // 判断当前节点的下一个节点是否为 null // a. 如果当前节点的下一个节点为 null // 就执行 do {} while (index < t.length && (next = t[index++]) == null); // 再 table 数组中 遍历,寻找 table 数组中的下一个 Node 并赋值给 next // b. 如果当前节点的下一个节点不为 null // 就将当前节点的下一个节点赋值给 next,并且此刻不会去 table 数组中遍历下一个 Node 节点 // 7.3 将找到的节点 e 返回 // 7.4 之后每次执行 iterator.next(),都像 a、b 那样去判断遍历,直到遍历完成 Iterator iterator = hashSet.iterator(); while (iterator.hasNext()) { Object next = iterator.next(); System.out.println(next); } } }
HashSet
est HashMap
, l'itérateur de HashSet
est également implémenté par HashMap
🎜🎜2. HashSet.iterator() appelle en fait le KeySet().iterator()
🎜rrreee🎜3 de HashMap
.KeySet()
La méthode renvoie un objet KeySet
, et KeySet
est une classe interne de HashMap
🎜rrreee🎜4. ) renvoie un objet KeyIterator
, KeyIterator
est une classe interne de HashMap
🎜rrreee🎜5.KeyIterator
code> hérite de la classe HashIterator
(classe interne de HashMap
) et implémente l'interface Iterator
, c'est-à-dire KeyIterator
et HashIterator
sont les véritables implémentations de la classe🎜rrreee🎜6 de Iterator. Après avoir exécuté Iterator iterator = HashSet.iterator;
, un élément a été stocké dans l'objet iterator
à ce moment-là Node 🎜KeySet().iterator()
renvoie un objet KeyIterator
🎜new KeyIterator()
调用 KeyIterator
的无参构造器
在这之前,会先调用其父类 HashIterator
的无参构造器
因此,分析 HashIterator
的无参构造器就知道发生了什么
/** * Node<K,V> next; // next entry to return * Node<K,V> current; // current entry * int expectedModCount; // for fast-fail * int index; // current slot * HashIterator() { * expectedModCount = modCount; * Node<K,V>[] t = table; * current = next = null; * index = 0; * if (t != null && size > 0) { // advance to first entry * do {} while (index < t.length && (next = t[index++]) == null); * } * } */
next
、current
、index
都是 HashIterator
的属性
Node<k>[] t = table;</k>
先把 Node
数组 talbe
赋给 t
current = next = null;
current
、next
都置为 null
index = 0;
index
置为 0
do {} while (index 这个 <code>do-while
会在 table
中遍历 Node
结点
一旦 (next = t[index++]) == null
不成立 时,就说明找到了一个 table
中的 Node
结点
将这个节点赋给 next
,并退出当前 do-while
循环
此时 Iterator iterator = HashSet.iterator;
就执行完了
当前 iterator
的运行类型其实是 HashIterator
,而 HashIterator
的 next
中存储着从 table
中遍历出来的一个 Node
结点
7.执行 iterator.hasNext
此时的 next
存储着一个 Node
,所以并不为 null
,返回 true
public final boolean hasNext() { return next != null; }
8.执行 iterator.next()
I.Node<k> e = next;</k>
把当前存储着 Node
结点的 next
赋值给了 e
II.(next = (current = e).next) == null
判断当前结点的下一个结点是否为 null
(a). 如果当前结点的下一个结点为 null
,就执行 do {} while (index ,在 <code>table
数组中遍历,寻找 table
数组中的下一个 Node
并赋值给 next
(b). 如果当前结点的下一个结点不为 null
,就将当前结点的下一个结点赋值给 next
,并且此刻不会去 table
数组中遍历下一个 Node
结点
III.将找到的结点 e
返回
IV.之后每次执行 iterator.next()
都像 (a)、(b) 那样去判断遍历,直到遍历完成
/** * HashSet 源码分析 */ public class HashSetSourceMain { public static void main(String[] args) { HashSet hashSet = new HashSet(); hashSet.add("java"); hashSet.add("php"); hashSet.add("java"); System.out.println("set = " + hashSet); // HashSet 迭代器实现原理 // HashSet 底层是 HashMap,HashMap 底层是 数组 + 链表 + 红黑树 // HashSet 本身没有实现迭代器,而是借由 HashMap 来实现的 // 1. hashSet.iterator() 实际上是去调用 HashMap 的 keySet().iterator() /** * public Iteratoriterator() { * return map.keySet().iterator(); * } */ // 2. KeySet() 方法返回一个 KeySet 对象,而 KeySet 是 HashMap 的一个内部类 /** * public Set keySet() { * Set ks = keySet; * if (ks == null) { * ks = new KeySet(); * keySet = ks; * } * return ks; * } */ // 3. KeySet().iterator() 方法返回一个 KeyIterator 对象,KeyIterator 是 HashMap的一个内部类 /** * public final Iterator<K> iterator() { return new KeyIterator(); } */ // 4. KeyIterator 继承了 HashIterator(HashMap的内部类) 类,并实现了 Iterator 接口 // 即 KeyIterator、HashIterator 才是真正实现 迭代器的类 /** * final class KeyIterator extends HashIterator * implements Iterator { * public final K next() { return nextNode().key; } * } */ // 5. 当执行完 Iterator iterator = hashSet.iterator(); 后 // 此时的 iterator 对象中已经存储了一个元素节点 // 怎么做到的? // 回到第 3 步,KeySet().iterator() 方法返回一个 KeyIterator 对象 // new KeyIterator() 调用 KeyIterator 的无参构造器 // 在这之前,会先调用 KeyIterator 父类 HashIterator 的无参构造器 // 因此分析 HashIterator 的无参构造器就知道发生了什么 /** * Node next; // next entry to return * Node current; // current entry * int expectedModCount; // for fast-fail * int index; // current slot * HashIterator() { * expectedModCount = modCount; * Node [] t = table; * current = next = null; * index = 0; * if (t != null && size > 0) { // advance to first entry * do {} while (index < t.length && (next = t[index++]) == null); * } * } */ // 5.0 next, current, index 都是 HashIterator 的属性 // 5.1 Node [] t = table; 先把 Node 数组 table 赋给 t // 5.2 current = next = null; 把 current 和 next 都置为 null // 5.3 index = 0; index 置为 0 // 5.4 do {} while (index < t.length && (next = t[index++]) == null); // 这个 do{} while 循环会在 table 中 遍历 Node节点 // 一旦 (next = t[index++]) == null 不成立时,就说明找到了一个 table 中的节点 // 将这个节点赋给 next,并退出当前 do while循环 // 此时 Iterator iterator = hashSet.iterator(); 就执行完了 // 当前 iterator 的运行类型其实是 HashIterator,而 HashIterator 的 next 中存储着从 table 中遍历出来的一个 Node节点 // 6. 执行 iterator.hasNext() /** * public final boolean hasNext() { * return next != null; * } */ // 6.1 此时的 next 存储着一个 Node,所以并不为 null,返回 true // 7. 执行 iterator.next(),其实是去执行 HashIterator 的 nextNode() /** * final Node nextNode() { * Node [] t; * Node e = next; * if (modCount != expectedModCount) * throw new ConcurrentModificationException(); * if (e == null) * throw new NoSuchElementException(); * if ((next = (current = e).next) == null && (t = table) != null) { * do {} while (index < t.length && (next = t[index++]) == null); * } * return e; * } */ // 7.1 Node e = next; 把当前存储着 Node 节点的 next 赋值给了 e // 7.2 (next = (current = e).next) == null // 判断当前节点的下一个节点是否为 null // a. 如果当前节点的下一个节点为 null // 就执行 do {} while (index < t.length && (next = t[index++]) == null); // 再 table 数组中 遍历,寻找 table 数组中的下一个 Node 并赋值给 next // b. 如果当前节点的下一个节点不为 null // 就将当前节点的下一个节点赋值给 next,并且此刻不会去 table 数组中遍历下一个 Node 节点 // 7.3 将找到的节点 e 返回 // 7.4 之后每次执行 iterator.next(),都像 a、b 那样去判断遍历,直到遍历完成 Iterator iterator = hashSet.iterator(); while (iterator.hasNext()) { Object next = iterator.next(); System.out.println(next); } } }
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!