Maison  >  Article  >  développement back-end  >  Comment utiliser l'analyse de liste Python ?

Comment utiliser l'analyse de liste Python ?

王林
王林avant
2023-04-16 21:10:06869parcourir

Python est un langage de programmation extrêmement diversifié et puissant ! Lorsqu’un problème doit être résolu, il existe différentes approches. Dans cet article, la compréhension des listes sera démontrée. Nous discuterons de la manière de l'utiliser ? Quand faut-il ou non l’utiliser ?

Comment utiliser l'analyse de liste Python ?

Avantages de la compréhension de liste

  • Cela permet de gagner du temps et de l'espace par rapport aux boucles.
  • Nécessite moins de lignes de code.
  • Convertissez les instructions d'itération en formules.

Comment créer une liste en Python

La compréhension de liste est une structure syntaxique qui crée une liste basée sur une liste existante. Examinons les différentes implémentations de création de listes

Boucles

Les boucles sont la manière traditionnelle de créer des listes. Quel que soit le type de boucle que vous utilisez. Pour créer une liste de cette façon, vous devez :

  1. instancier une liste vide.
  2. Parcourez les éléments d'un itérable (tel que la plage).
  3. Ajoutez chaque élément à la fin de la liste.
numbers = []
for number in range(10):
numbers.append(number)

print(numbers)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Dans cet exemple, vous instanciez une liste vide de nombres​. Utilisez ensuite une boucle for pour parcourir range(10) et ajoutez chaque numéro à la fin de la liste à l’aide de la méthode append(). Objet

map()

map()​ est une autre façon de créer une liste. Vous devez transmettre à map() une fonction et un objet itérable, après quoi il crée un objet. Cet objet contient la sortie obtenue en exécutant chaque élément d'itération à l'aide de la fonction spécifiée.

Par exemple, il nous sera demandé d'ajouter la TVA au prix de certains produits.

VAT_PERCENT = 0.1# 10%


def add_vat(price):
return price + (price * VAT_PERCENT)


prices = [10.03, 8.6, 32.85, 41.5, 22.64]
grand_prices = map(add_vat, prices)
print(grand_prices)
grand_prices = list(grand_prices)
print(grand_prices)

Vous avez construit la fonction add_vat()​ et créé l'objet itérable price. Vous transmettez les deux arguments à map() et collectez l'objet cartographique résultant grand_prices , ou vous pouvez facilement le convertir en liste à l'aide de list() .

<map object at 0x7f18721e7400># map(add_vat, prices)
[11.03, 9.46, 36.14, 45.65, 24.9]# list(grand_prices)

Compréhension de liste

Maintenant, regardons l'approche de compréhension de liste ! C'est en effet Pythonic et une meilleure façon de créer des listes. Pour voir à quel point cette approche est puissante, réécrivons l’exemple de boucle avec une seule ligne de code.

numbers = [number for number in range(10)]
print(numbers)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

Comme vous pouvez le constater, c'est une méthode incroyable ! La compréhension de la liste semble suffisamment lisible pour que vous n'ayez pas besoin d'écrire plus de code qu'une seule ligne.

Pour une meilleure compréhension des listes, consultez le format de syntaxe suivant :

new_list = [expression for member in iterable]

Quelle méthode est la plus efficace

D'accord, nous avons appris à utiliser les boucles, map() et les compréhensions de listes pour créer des listes dans votre La question "qui la méthode est plus efficace » peut venir à l’esprit. Analysons-le !

import random
import timeit


VAT_PERCENT = 0.1
PRICES = [random.randrange(100) for x in range(100000)]


def add_vat(price):
return price + (price * VAT_PERCENT)


def get_grand_prices_with_map():
return list(map(add_vat, PRICES))


def get_grand_prices_with_comprehension():
return [add_vat(price) for price in PRICES]


def get_grand_prices_with_loop():
grand_prices = []
for price in PRICES:
grand_prices.append(add_vat(price))
return grand_prices


print(timeit.timeit(get_grand_prices_with_map, number=100))
print(timeit.timeit(add_grand_prices_with_comprehension, number=100))
print(timeit.timeit(get_grand_prices_with_loop, number=100))
0.9833468980004909# with_map
1.197223742999995 # with_comprehension
1.3564663889992516# with_loop

Comme nous pouvons le voir maintenant, la meilleure façon de créer une liste est map(), la deuxième meilleure façon est la compréhension de la liste, et enfin la boucle.

Cependant, le choix de la méthode doit dépendre de ce que vous souhaitez réaliser.

  • L'utilisation de map() peut rendre votre code plus efficace.
  • L'utilisation de boucles peut rendre les idées de code plus claires.
  • L'utilisation de compréhensions de listes peut rendre votre code plus compact et efficace. C’est la meilleure façon de créer une liste car c’est la plus lisible.

Formules analytiques avancées

Logique conditionnelle

Plus tôt, je vous ai montré cette formule :

new_list = [expression for member in iterable]

La formule est peut-être un peu incomplète. Une description plus complète des expressions analytiques ajoute la prise en charge des conditions facultatives. La façon la plus courante d'ajouter une logique conditionnelle à une compréhension de liste est d'ajouter un conditionnel à la fin de l'expression :

new_list = [expression for member in iterable (if conditional)]

Ici, votre instruction conditionnelle se trouve juste entre les parenthèses droites.

Les conditions sont importantes car elles permettent aux compréhensions de listes de filtrer les valeurs indésirables, ce qui peut également être fait en appelant filter() dans le cas général :

numbers = [number for number in range(20) if number % 2 == 0]
print(numbers)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Comme vous pouvez le voir, cette compréhension collecte les valeurs qui peuvent être utilisées par 2 Un nombre divisible et sans reste.

Si vous avez besoin de filtres plus complexes, vous pouvez même déplacer la logique conditionnelle dans une fonction distincte.

def is_prime(number):
if number > 1:
for el in range(2, int(number/2)+1):
if (number % el) == 0:
return False 
else:
return True


numbers = [number for number in range(20) if is_prime(number)]
print(numbers)
[2, 3, 5, 7, 11, 13, 17, 19]

Vous construisez is_prime(number) pour déterminer si un nombre est premier et renvoie un booléen. Ensuite, vous devez ajouter la fonction à la condition de l'expression analytique.

Cette formule vous permet de choisir parmi plusieurs options de sortie possibles en utilisant une logique conditionnelle. Par exemple, vous avez une liste de prix de produits et s'il y a des nombres négatifs, vous devez les convertir en nombres positifs :

price_list = [1.34, 19.01, -4.2, 6, 8.78, -1,1]
normalized_price_list = [price if price > 0 else price*-1 for price in price_list]
print(normalized_price_list)
[1.34, 19.01, 4.2, 6, 8.78, 1,1]

Ici, votre expression prix a une instruction conditionnelle si prix > 0 sinon prix*-1. Cela indique à Python d'afficher la valeur du prix si le prix est positif, mais de convertir le prix en une valeur positive si le prix est négatif. Cette fonctionnalité est puissante et il est vraiment utile de considérer la logique conditionnelle comme sa propre fonction :

def normalize_price(price):
return price if price > 0 else price*-1


price_list = [1.34, 19.01, -4.2, 6, 8.78, -1,1]
normalized_price_list = [normalize_price(price) for price in price_list]
print(normalized_price_list)
[1.34, 19.01, 4.2, 6, 8.78, 1,1]

集合解析式

您还可以创建一个集合解析式!它基本与列表解析式相同。不同之处在于集合解析式不包含重复项。您可以通过使用花括号取代方括号来创建集合解析式:

string = "Excellent"
unique_string = {letter for letter in string}
print(unique_string)
{"E", "e", "n", "t", "x", "c", "l"}

你的集合解析式只包含唯一的字母。这与列表不同,集合不保证项目将以特定顺序存储数据。这就是为什么集合输出的第二个字母是 e​,即使字符串中的第二个字母是 x。

字典解析式

字典解析式也是是类似的,但需要定义一个键:

string = "Words are but wind"
word_order = {el: ind+1 for ind, el in enumerate(string.split())}
print(word_order)
{"Words": 1, "are": 2, "but": 3, "wind": 4}

要创建 word_order​ 字典,请在表达式中使用花括号 ({}​) 以及键值对 (el: ind+1)。

海象运算符

Python 3.8 中引入的海象运算符允许您一次解决两个问题:为变量赋值,返回该值。

假设您需要对将返回温度数据的 API 应用十次。您想要的只是 100 华氏度以上的结果。而每个请求可能都会返回不同的数据。在这种情况下,没有办法在 Python 中使用列表解析式来解决问题。可迭代成员(如果有条件)的公式表达式无法让条件将数据分配给表达式可以访问的变量。

海象运算符解决了这个问题。它允许您在执行表达式的同时将输出值分配给变量。以下示例显示了这是如何实现的,使用 get_weather_data() 生成伪天气数据:

import random


def get_weather_data():
return random.randrange(90, 110)


hot_temps = [temp for item in range(20) if (temp := get_weather_data()) >= 100]
print(hot_temps)
[108, 100, 106, 103, 108, 106, 103, 104, 109, 106]

什么时候不要使用解析式

列表解析式非常有用,它可以帮助您编写清晰且易于阅读和调试的代码。但在某些情况下,它们可能会使您的代码运行速度变慢或使用更多内存。如果它让您的代码效率更低或更难理解,那么可以考虑选择另一种方式。

注意嵌套的解析式

可以通过嵌套解析式以创建列表、字典和集合的组合集合(译者注:这个集合不是指 set 对象类型,而是 collection,泛指容器)。例如,假设一家公司正在跟踪一年中五个不同城市的收入。存储这些数据的完美数据结构可以是嵌套在字典解析式中的列表解析式。

cities = ['New York', 'Oklahoma', 'Toronto', 'Los Angeles', 'Miami']
budgets = {city: [0 for x in range(12)] for city in cities}
print(budgets)
{
"NewYork": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
"Oklahoma": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
"Toronto": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
"LosAngeles": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
"Miami": [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
}

您使用字典解析式创建了 budgets​ 容器。该表达式是一个键值对,其中包含另一个解析式。此代码将快速生成城市中每个 city 的数据列表。

嵌套列表是创建矩阵的常用方法,通常用于数学目的。查看下面的代码块:

matrix = [[x for x in range(7)] for y in range(6)]
print(matrix)
[
[0, 1, 2, 3, 4, 5, 6],
[0, 1, 2, 3, 4, 5, 6],
[0, 1, 2, 3, 4, 5, 6],
[0, 1, 2, 3, 4, 5, 6],
[0, 1, 2, 3, 4, 5, 6],
[0, 1, 2, 3, 4, 5, 6]
]

外部列表解析式 [... for y in range(6)]​ 创建了六行,而内部列表解析式 [x for x in range(7)] 将用值填充这些行中的每一行。

到目前为止,每个嵌套解析式的目标都是真正且直观的。但是,还有一些其他情况,例如创建扁平化的嵌套列表,其中的逻辑可以使您的代码非常难以阅读。让我们看下面的例子,使用嵌套列表解析式来展平一个矩阵:

matrix = [
[0, 1, 0],
[1, 0, 1],
[2, 1, 2],
]
flat = [num for row in matrix for num in row]
print(flat)
[0, 1, 0, 1, 0, 1, 2, 1, 2]

扁平化矩阵的代码确实很简洁,但是太难理解了,您应该花点时间弄清楚它是如何工作的。另一方面,如果您使用 for 循环来展平相同的矩阵,那么您的代码将更加简单易读:

matrix = [
[0, 1, 0],
[1, 0, 1],
[2, 1, 2],
]
flat = []
for row in matrix:
for num in row:
flat.append(num)
print(flat)
[0, 1, 0, 1, 0, 1, 2, 1, 2]

现在,您可以看到代码一次遍历矩阵的一行,在移动到下一行之前取出该行中的所有元素。

虽然嵌套列表解析式可能看起来更具有 Python 风格,但对于能够编写出您的团队可以轻松理解和修改的代码来才是更加最重要的。当选择一个方法时,您应该根据解析式是有助于还是有损于可读性来做出相应的判断。

为大型数据集使用生成器

Python 中的列表解析式通过将整个列表存储到内存中来工作。对于小型至中型列表这通常很好。如果您想将前一千个整数相加,那么列表解析式将轻松地解决此任务:

summary = sum([x for x in range(1000)])
print(summary)
499500

但是,如果您需要对十亿个数字求和呢?您可以尝试执行此操作,但您的计算机可能不会有响应。这是可能因为计算机中分配大量内存。也许您是因为计算机没有如此多的内存资源。

例如,你想要一些第一个十亿整数,那么让我们使用生成器!这可能多需要一些时间,但计算机应该可以克服它:

summary = sum((x for x in range(1000000000)))
print(summary)
499999999500000000

让我们来对比一下哪种方法是更优的!

import timeit


def get_sum_with_map():
return sum(map(lambda x: x, range(1000000000)))


def get_sum_with_generator():
return sum((x for x in range(1000000000)))


print(timeit.timeit(get_sum_with_map, number=100))
print(timeit.timeit(get_sum_with_generator, number=100))
4940.844053814# get_sum_with_map
3464.1995523349997# get_sum_with_generator

正如您所见,生成器比 map() 高效得多。

总结

本文向您介绍了列表解析式,以及如何使用它来解决复杂的任务,而不会使您的代码变得过于困难。

Maintenant, vous :

  • Vous avez appris plusieurs façons alternatives de créer des listes.
  • Découvrez les avantages de chaque méthode.
  • Peut simplifier les boucles et les appels map() pour lister les compréhensions.
  • Compris un moyen d'ajouter une logique conditionnelle aux expressions analytiques.
  • Peut créer des ensembles et des expressions de dictionnaire.
  • J'ai appris quand ne pas utiliser d'expressions analytiques.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Cet article est reproduit dans:. en cas de violation, veuillez contacter admin@php.cn Supprimer