Maison > Article > développement back-end > Utilisez Flask pour créer des microservices Python sur Kubernetes
Les microservices suivent le Domain Driven Design (DDD) et sont indépendants de la plateforme de développement. Les microservices Python ne font pas exception. La nature orientée objet de Python3 facilite la modélisation des services en termes de DDD.
La puissance de l'architecture des microservices réside dans sa nature multilingue. L'entreprise décompose ses fonctionnalités en un ensemble de microservices, et chaque équipe est libre de choisir une plateforme.
Notre système de gestion des utilisateurs a été décomposé en quatre microservices, à savoir les services d'ajout, de recherche, de recherche et de journalisation. Les services ajoutés sont développés sur la plateforme Java et déployés sur des clusters Kubernetes pour plus de résilience et d'évolutivité. Cela ne signifie pas que le reste des services doit également être développé en Java. Nous sommes libres de choisir la plateforme qui convient à nos différents services.
Choisissons Python comme plateforme pour développer le service de recherche. Le modèle de recherche de services a été conçu (voir article de mars 2022), il ne reste plus qu'à convertir ce modèle en code et configuration.
Python est un langage de programmation généraliste qui existe depuis environ 30 ans. Au début, c'était le choix idéal pour les scripts d'automatisation. Cependant, avec l’avènement de frameworks comme Django et Flask, sa popularité a augmenté et il est désormais utilisé dans divers domaines tels que le développement d’applications d’entreprise. La science des données et l’apprentissage automatique ont encore stimulé sa croissance, et Python est désormais l’un des trois principaux langages de programmation.
Beaucoup de gens attribuent le succès de Python à sa facilité de codage. Ce n’est qu’une partie de la raison. Tant que votre objectif est de développer de petits scripts, Python est comme un jouet que vous apprécierez vraiment. Cependant, lorsque vous entrez dans le domaine du développement sérieux d'applications à grande échelle, vous devrez gérer de nombreux if
et else
, Python devient aussi bon ou aussi mauvais que n'importe quelle autre plateforme. Par exemple, adoptez une approche orientée objet ! De nombreux développeurs Python ne réalisent peut-être même pas que Python prend en charge les classes, l'héritage, etc. Python prend en charge le développement orienté objet à part entière, mais à sa manière : Pythonic ! Explorons-le ! if
和 else
,Python 变得与任何其他平台一样好或一样坏。例如,采用一种面向对象的方法!许多 Python 开发人员甚至可能没意识到 Python 支持类、继承等功能。Python 确实支持成熟的面向对象开发,但是有它自己的方式 -- Pythonic!让我们探索一下!
AddService
通过将数据保存到一个 MySQL 数据库中来将用户添加到系统中。FindService
的目标是提供一个 REST API 按用户名查找用户。域模型如图 1 所示。它主要由一些值对象组成,如 User
实体的Name
、PhoneNumber
以及 UserRepository
。
图 1: 查找服务的域模型
让我们从 Name
开始。由于它是一个值对象,因此必须在创建时进行验证,并且必须保持不可变。基本结构如所示:
class Name:value: strdef __post_init__(self):if self.value is None or len(self.value.strip()) < 8 or len(self.value.strip()) > 32:raise ValueError("Invalid Name")
如你所见,Name
AddService
Ajoute des utilisateurs au système en enregistrant les données dans une base de données MySQL. FindService est de fournir une API REST pour rechercher des utilisateurs par nom d'utilisateur. Le modèle de domaine est illustré à la figure 1. Il se compose principalement de certains objets de valeur, tels que <code style="background-color: rgb(231, 243, 237); padding: 0px 3px; border-radius: 4px; overflow-wrap: break-word; text- indent : 0px;">Utilisateur
EntityNom
,PhoneNumber
et UserRepository
. 🎜🎜🎜🎜Figure 1 : Modèle de domaine pour rechercher des services🎜🎜🎜Commençons par Nom
Début. Puisqu’il s’agit d’un objet de valeur, il doit être validé dès la création et doit rester immuable. La structure de base est la suivante : 🎜
from dataclasses import dataclass@dataclassclass Name:value: strdef __post_init__(self):if self.value is None or len(self.value.strip()) < 8 or len(self.value.strip()) > 32:raise ValueError("Invalid Name")🎜Comme vous pouvez le voir,
Nom
Contient une valeur de type chaîne. Nous vérifions cela dans le cadre de la post-initialisation. 🎜
Python 3.7 提供了 @dataclass
装饰器,它提供了许多开箱即用的数据承载类的功能,如构造函数、比较运算符等。如下是装饰后的 Name
类:
from dataclasses import dataclass@dataclassclass Name:value: strdef __post_init__(self):if self.value is None or len(self.value.strip()) < 8 or len(self.value.strip()) > 32:raise ValueError("Invalid Name")
以下代码可以创建一个 Name
对象:
name = Name("Krishna")
value
属性可以按照如下方式读取或写入:
name.value = "Mohan"print(name.value)
可以很容易地与另一个 Name
对象比较,如下所示:
other = Name("Mohan")if name == other:print("same")
如你所见,对象比较的是值而不是引用。这一切都是开箱即用的。我们还可以通过冻结对象使对象不可变。这是 Name
值对象的最终版本:
from dataclasses import dataclass@dataclass(frozen=True)class Name:value: strdef __post_init__(self):if self.value is None or len(self.value.strip()) < 8 or len(self.value.strip()) > 32:raise ValueError("Invalid Name")
PhoneNumber
也遵循类似的方法,因为它也是一个值对象:
@dataclass(frozen=True)class PhoneNumber:value: intdef __post_init__(self):if self.value < 9000000000:raise ValueError("Invalid Phone Number")
User
类是一个实体,不是一个值对象。换句话说,User
是可变的。以下是结构:
from dataclasses import dataclassimport datetime@dataclassclass User:_name: Name_phone: PhoneNumber_since: datetime.datetimedef __post_init__(self):if self._name is None or self._phone is None:raise ValueError("Invalid user")if self._since is None:self.since = datetime.datetime.now()
你能观察到 User
并没有冻结,因为我们希望它是可变的。但是,我们不希望所有属性都是可变的。标识字段如 _name
和 _since
是希望不会修改的。那么,这如何做到呢?
Python3 提供了所谓的描述符协议,它会帮助我们正确定义 getter 和 setter。让我们使用 @property
装饰器将 getter 添加到 User
的所有三个字段中。
@propertydef name(self) -> Name:return self._name@propertydef phone(self) -> PhoneNumber:return self._phone@propertydef since(self) -> datetime.datetime:return self._since
phone
字段的 setter 可以使用 @.setter
来装饰:
@phone.setterdef phone(self, phone: PhoneNumber) -> None:if phone is None:raise ValueError("Invalid phone")self._phone = phone
通过重写 __str__()
函数,也可以为 User
提供一个简单的打印方法:
def __str__(self):return self.name.value + " [" + str(self.phone.value) + "] since " + str(self.since)
这样,域模型的实体和值对象就准备好了。创建异常类如下所示:
class UserNotFoundException(Exception):pass
域模型现在只剩下 UserRepository
了。Python 提供了一个名为 abc
的有用模块来创建抽象方法和抽象类。因为 UserRepository
只是一个接口,所以我们可以使用 abc
模块。
任何继承自 abc.ABC
的类都将变为抽象类,任何带有 @abc.abstractmethod
装饰器的函数都会变为一个抽象函数。下面是 UserRepository
的结构:
from abc import ABC, abstractmethodclass UserRepository(ABC):@abstractmethoddef fetch(self, name:Name) -> User:pass
UserRepository
遵循仓储模式。换句话说,它在 User
实体上提供适当的 CRUD 操作,而不会暴露底层数据存储语义。在本例中,我们只需要 fetch()
操作,因为 FindService
只查找用户。
因为 UserRepository
是一个抽象类,我们不能从抽象类创建实例对象。创建对象必须依赖于一个具体类实现这个抽象类。数据层 UserRepositoryImpl
提供了 UserRepository
的具体实现:
class UserRepositoryImpl(UserRepository):def fetch(self, name:Name) -> User:pass
由于 AddService
将用户数据存储在一个 MySQL 数据库中,因此 UserRepositoryImpl
也必须连接到相同的数据库去检索数据。下面是连接到数据库的代码。注意,我们正在使用 MySQL 的连接库。
from mysql.connector import connect, Errorclass UserRepositoryImpl(UserRepository):def fetch(self, name:Name) -> User:try:with connect(host="mysqldb",user="root",password="admin",database="glarimy",) as connection:with connection.cursor() as cursor:cursor.execute("SELECT * FROM ums_users where name=%s", (name.value,))row = cursor.fetchone()if cursor.rowcount == -1:raise UserNotFoundException()else:return User(Name(row[0]), PhoneNumber(row[1]), row[2])except Error as e:raise e
在上面的片段中,我们使用用户 root
/ 密码 admin
连接到一个名为 mysqldb
的数据库服务器,使用名为 glarimy
的数据库(模式)。在演示代码中是可以包含这些信息的,但在生产中不建议这么做,因为这会暴露敏感信息。
fetch()
操作的逻辑非常直观,它对 ums_users
表执行 SELECT 查询。回想一下,AddService
正在将用户数据写入同一个表中。如果 SELECT 查询没有返回记录,fetch()
函数将抛出 UserNotFoundException
异常。否则,它会从记录中构造 User
实体并将其返回给调用者。这没有什么特殊的。
最终,我们需要创建应用层。此模型如图 2 所示。它只包含两个类:控制器和一个 DTO。
图 2: 添加服务的应用层
众所周知,一个 DTO 只是一个没有任何业务逻辑的数据容器。它主要用于在 FindService
和外部之间传输数据。我们只是提供了在 REST 层中将 UserRecord
转换为字典以便用于 JSON 传输:
class UserRecord:def toJSON(self):return {"name": self.name,"phone": self.phone,"since": self.since}
控制器的工作是将 DTO 转换为用于域服务的域对象,反之亦然。可以从 find()
操作中观察到这一点。
class UserController:def __init__(self):self._repo = UserRepositoryImpl()def find(self, name: str):try:user: User = self._repo.fetch(Name(name))record: UserRecord = UserRecord()record.name = user.name.valuerecord.phone = user.phone.valuerecord.since = user.sincereturn recordexcept UserNotFoundException as e:return None
find()
操作接收一个字符串作为用户名,然后将其转换为 Name
对象,并调用 UserRepository
获取相应的 User
对象。如果找到了,则使用检索到的 User`` 对象创建
UserRecord`。回想一下,将域对象转换为 DTO 是很有必要的,这样可以对外部服务隐藏域模型。
UserController
不需要有多个实例,它也可以是单例的。通过重写 __new__
,可以将其建模为一个单例。
class UserController:def __new__(self):if not hasattr(self, ‘instance’):self.instance = super().__new__(self)return self.instancedef __init__(self):self._repo = UserRepositoryImpl()def find(self, name: str):try:user: User = self._repo.fetch(Name(name))record: UserRecord = UserRecord()record.name = user.name.getValue()record.phone = user.phone.getValue()record.since = user.sincereturn recordexcept UserNotFoundException as e:return None
我们已经完全实现了 FindService
的模型,剩下的唯一任务是将其作为 REST 服务公开。
FindService
只提供一个 API,那就是通过用户名查找用户。显然 URI 如下所示:
GET /user/{name}
此 API 希望根据提供的用户名查找用户,并以 JSON 格式返回用户的电话号码等详细信息。如果没有找到用户,API 将返回一个 404 状态码。
我们可以使用 Flask 框架来构建 REST API,它最初的目的是使用 Python 开发 Web 应用程序。除了 HTML 视图,它还进一步扩展到支持 REST 视图。我们选择这个框架是因为它足够简单。 创建一个 Flask 应用程序:
from flask import Flaskapp = Flask(__name__)
然后为 Flask 应用程序定义路由,就像函数一样简单:
@app.route('/user/<name>')def get(name):pass
注意 @app.route
映射到 API /user/<name></name>
,与之对应的函数的 get()
。
如你所见,每次用户访问 API 如 http://server:port/user/Krishna
时,都将调用这个 get()
函数。Flask 足够智能,可以从 URL 中提取 Krishna
作为用户名,并将其传递给 get()
函数。
get()
函数很简单。它要求控制器找到该用户,并将其与通常的 HTTP 头一起打包为 JSON 格式后返回。如果控制器返回 None
,则 get()
函数返回合适的 HTTP 状态码。
from flask import jsonify, abortcontroller = UserController()record = controller.find(name)if record is None:abort(404)else:resp = jsonify(record.toJSON())resp.status_code = 200return resp
最后,我们需要 Flask 应用程序提供服务,可以使用 waitress
服务:
from waitress import serveserve(app, host="0.0.0.0", port=8080)
在上面的片段中,应用程序在本地主机的 8080 端口上提供服务。最终代码如下所示:
from flask import Flask, jsonify, abortfrom waitress import serveapp = Flask(__name__)@app.route('/user/<name>')def get(name):controller = UserController()record = controller.find(name)if record is None:abort(404)else:resp = jsonify(record.toJSON())resp.status_code = 200return respserve(app, host="0.0.0.0", port=8080)
FindService
的代码已经准备完毕。除了 REST API 之外,它还有域模型、数据层和应用程序层。下一步是构建此服务,将其容器化,然后部署到 Kubernetes 上。此过程与部署其他服务妹有任何区别,但有一些 Python 特有的步骤。
在继续前进之前,让我们来看下文件夹和文件结构:
+ ums-find-service+ ums- domain.py- data.py- app.py- Dockerfile- requirements.txt- kube-find-deployment.yml
如你所见,整个工作文件夹都位于 ums-find-service
下,它包含了 ums
文件夹中的代码和一些配置文件,例如 Dockerfile
、requirements.txt
和 kube-find-deployment.yml
。
domain.py
包含域模型,data.py
包含 UserRepositoryImpl
,app.py
包含剩余代码。我们已经阅读过代码了,现在我们来看看配置文件。
第一个是 requirements.txt
,它声明了 Python 系统需要下载和安装的外部依赖项。我们需要用查找服务中用到的每个外部 Python 模块来填充它。如你所见,我们使用了 MySQL 连接器、Flask 和 Waitress 模块。因此,下面是 requirements.txt
的内容。
Flask==2.1.1Flask_RESTfulmysql-connector-pythonwaitress
第二步是在 Dockerfile
中声明 Docker 相关的清单,如下:
FROM python:3.8-slim-busterWORKDIR /umsADD ums /umsADD requirements.txt requirements.txtRUN pip3 install -r requirements.txtEXPOSE 8080ENTRYPOINT ["python"]CMD ["/ums/app.py"]
总的来说,我们使用 Python 3.8 作为基线,除了移动 requirements.txt
之外,我们还将代码从 ums
文件夹移动到 Docker 容器中对应的文件夹中。然后,我们指示容器运行 pip3 install
命令安装对应模块。最后,我们向外暴露 8080 端口(因为 waitress 运行在此端口上)。
为了运行此服务,我们指示容器使用使用以下命令:
python /ums/app.py
一旦 Dockerfile
准备完成,在 ums-find-service
文件夹中运行以下命令,创建 Docker 镜像:
docker build -t glarimy/ums-find-service
它会创建 Docker 镜像,可以使用以下命令查找镜像:
docker images
尝试将镜像推送到 Docker Hub,你也可以登录到 Docker。
docker logindocker push glarimy/ums-find-service
最后一步是为 Kubernetes 部署构建清单。
在之前的文章中,我们已经介绍了如何建立 Kubernetes 集群、部署和使用服务的方法。我假设仍然使用之前文章中的清单文件来部署添加服务、MySQL、Kafka 和 Zookeeper。我们只需要将以下内容添加到 kube-find-deployment.yml
文件中:
apiVersion: apps/v1kind: Deploymentmetadata:name: ums-find-servicelabels:app: ums-find-servicespec:replicas: 3selector:matchLabels:app: ums-find-servicetemplate:metadata:labels:app: ums-find-servicespec:containers:- name: ums-find-serviceimage: glarimy/ums-find-serviceports:- containerPort: 8080---apiVersion: v1kind: Servicemetadata:name: ums-find-servicelabels:name: ums-find-servicespec:type: LoadBalancerports:- port: 8080selector:app: ums-find-service
上面清单文件的第一部分声明了 glarimy/ums-find-service
镜像的 FindService
,它包含三个副本。它还暴露 8080 端口。清单的后半部分声明了一个 Kubernetes 服务作为 FindService
部署的前端。请记住,在之前文章中,mysqldb 服务已经是上述清单的一部分了。
运行以下命令在 Kubernetes 集群上部署清单文件:
kubectl create -f kube-find-deployment.yml
部署完成后,可以使用以下命令验证容器组和服务:
kubectl get services
输出如图 3 所示:
图 3: Kubernetes 服务
它会列出集群上运行的所有服务。注意查找服务的外部 IP,使用 curl
调用此服务:
curl http://10.98.45.187:8080/user/KrishnaMohan
注意:10.98.45.187 对应查找服务,如图 3 所示。
如果我们使用 AddService
创建一个名为 KrishnaMohan
的用户,那么上面的 curl
命令看起来如图 4 所示:
图 4: 查找服务
用户管理系统(UMS)的体系结构包含 AddService
和 FindService
,以及存储和消息传递所需的后端服务,如图 5 所示。可以看到终端用户使用 ums-add-service
的 IP 地址添加新用户,使用 ums-find-service
的 IP 地址查找已有用户。每个 Kubernetes 服务都由三个对应容器的节点支持。还要注意:同样的 mysqldb 服务用于存储和检索用户数据。
图 5: UMS 的添加服务和查找服务
UMS 系统还包含两个服务:SearchService
和 JournalService
。在本系列的下一部分中,我们将在 Node 平台上设计这些服务,并将它们部署到同一个 Kubernetes 集群,以演示多语言微服务架构的真正魅力。最后,我们将观察一些与微服务相关的设计模式。
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!