


Erreur d'étiquette ImageNet supprimée, le classement des modèles a été considérablement modifié
Auparavant, ImageNet était devenu un sujet brûlant en raison du problème des erreurs d'étiquette. Vous pourriez être surpris d'entendre ce nombre. Il y a au moins 100 000 étiquettes avec des problèmes. Les études basées sur des étiquettes incorrectes pourraient devoir être annulées et répétées.
De ce point de vue, gérer la qualité de l'ensemble des données reste très important.
De nombreuses personnes utiliseront l'ensemble de données ImageNet comme référence, mais sur la base des modèles pré-entraînés ImageNet, les résultats finaux peuvent varier en raison de la qualité des données.
Dans cet article, Kenichi Higuchi, un ingénieur de la société Adansons, réétudie l'ensemble de données ImageNet dans l'article "Avons-nous fini avec ImageNet ?", et réévalue le modèle publié sur torchvision après avoir supprimé les mauvaises données d'étiquette. .
Supprimez les données erronées d'ImageNet et réévaluez le modèle
Cet article divise les erreurs d'étiquetage dans ImageNet en trois catégories, comme indiqué ci-dessous.
(1) Données mal étiquetées
(2) Données correspondant à plusieurs étiquettes
(3) Données n'appartenant à aucune étiquette
En résumé, il y a environ plus de 14 000 données erronées. Considérant que le nombre de données d'évaluation est de 50 000, on constate que la proportion de données erronées est extrêmement élevée. La figure ci-dessous montre quelques données d'erreur représentatives.
Méthode
Sans recycler le modèle, cette étude élimine uniquement les données étiquetées par erreur, qui sont les données erronées de type (1) ci-dessus, et exclut toutes les données erronées des données d'évaluation, c'est-à-dire (1). -(3) données erronées pour revérifier l'exactitude du modèle.
Afin de supprimer les données erronées, un fichier de métadonnées décrivant les informations d'erreur de l'étiquette est requis. Dans ce fichier de métadonnées, s'il contient des erreurs de type (1)-(3), les informations seront décrites dans l'attribut "correction".
L'étude a utilisé un outil appelé Adansons Base, qui filtre les données en reliant les ensembles de données aux métadonnées. 10 modèles ont été testés ici comme indiqué ci-dessous.
10 modèles de classification d'images à tester
Résultats
Les résultats sont présentés dans le tableau ci-dessous (les valeurs sont la précision en %, les nombres entre parenthèses sont des classements)
10 Les résultats d'un modèle de classification
prend les données All Eval comme référence, exclut le mauvais type de données (1), et le taux de précision augmente en moyenne de 3,122 points ; exclut toutes les mauvaises données (1) ~ (3), le taux de précision augmente en moyenne de 11,743 points.
Comme prévu, à l'exclusion des données erronées, le taux de précision est amélioré dans tous les domaines, car par rapport aux données propres, les données erronées sont sujettes aux erreurs.
Lorsqu'elle est évaluée sans exclure les données erronées, et lorsque les données erronées (1) ~ (3) sont toutes exclues, le classement de précision du modèle change.
Dans cet article, il y a 3 670 données erronées (1), représentant 7,34 % du total de 50 000 données. Après suppression, le taux d'exactitude a augmenté d'environ 3,22 points en moyenne. Lorsque des données erronées sont supprimées, l’échelle des données change et une simple comparaison des taux d’exactitude peut être biaisée.
Conclusion
Bien que cela ne soit pas particulièrement souligné, il est important d'utiliser des données étiquetées avec précision lors de la formation à l'évaluation.
Des études précédentes peuvent avoir tiré des conclusions incorrectes lors de la comparaison de la précision entre les modèles. Les données doivent donc être évaluées en premier, mais peuvent-elles vraiment être utilisées pour évaluer les performances du modèle ?
De nombreux modèles utilisant l'apprentissage profond dédaignent souvent de réfléchir sur les données, mais sont désireux d'améliorer la précision et d'autres indicateurs d'évaluation grâce aux performances du modèle. Même si les données d'évaluation contiennent des données erronées, elles ne sont pas traitées avec précision.
Lors de la création de vos propres ensembles de données, par exemple lors de l'application de l'IA en entreprise, la création d'ensembles de données de haute qualité est directement liée à l'amélioration de la précision et de la fiabilité de l'IA. Les résultats expérimentaux de cet article montrent que la simple amélioration de la qualité des données peut améliorer la précision d'environ 10 points de pourcentage, ce qui démontre l'importance d'améliorer non seulement le modèle mais également l'ensemble de données lors du développement de systèmes d'IA.
Cependant, garantir la qualité de l’ensemble de données n’est pas facile. Bien qu’il soit important d’augmenter la quantité de métadonnées pour évaluer correctement la qualité des modèles et des données d’IA, cela peut s’avérer fastidieux à gérer, en particulier avec des données non structurées.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Explorer le fonctionnement interne des modèles de langue avec Gemma Scope Comprendre les complexités des modèles de langue IA est un défi important. La sortie de Google de Gemma Scope, une boîte à outils complète, offre aux chercheurs un moyen puissant de plonger

Déverrouiller le succès de l'entreprise: un guide pour devenir un analyste de Business Intelligence Imaginez transformer les données brutes en informations exploitables qui stimulent la croissance organisationnelle. C'est le pouvoir d'un analyste de Business Intelligence (BI) - un rôle crucial dans GU

Instruction ALTER TABLE de SQL: Ajout de colonnes dynamiquement à votre base de données Dans la gestion des données, l'adaptabilité de SQL est cruciale. Besoin d'ajuster votre structure de base de données à la volée? L'énoncé de la table alter est votre solution. Ce guide détaille l'ajout de Colu

Introduction Imaginez un bureau animé où deux professionnels collaborent sur un projet critique. L'analyste commercial se concentre sur les objectifs de l'entreprise, l'identification des domaines d'amélioration et la garantie d'alignement stratégique sur les tendances du marché. Simulé

Excel Counting and Analysis: Explication détaillée du nombre et des fonctions de compte Le comptage et l'analyse des données précises sont essentiels dans Excel, en particulier lorsque vous travaillez avec de grands ensembles de données. Excel fournit une variété de fonctions pour y parvenir, les fonctions Count et Count sont des outils clés pour compter le nombre de cellules dans différentes conditions. Bien que les deux fonctions soient utilisées pour compter les cellules, leurs cibles de conception sont ciblées sur différents types de données. Faisons des détails spécifiques du comptage et des fonctions de coude, mettons en évidence leurs caractéristiques et différences uniques et apprenez à les appliquer dans l'analyse des données. Aperçu des points clés Comprendre le nombre et le cou

La révolution de l'IA de Google Chrome: une expérience de navigation personnalisée et efficace L'intelligence artificielle (IA) transforme rapidement notre vie quotidienne, et Google Chrome mène la charge dans l'arène de navigation Web. Cet article explore les exciti

Réinventuation d'impact: le quadruple bas Pendant trop longtemps, la conversation a été dominée par une vision étroite de l’impact de l’IA, principalement axée sur le résultat du profit. Cependant, une approche plus holistique reconnaît l'interconnexion de BU

Les choses évoluent régulièrement vers ce point. L'investissement affluant dans les prestataires de services quantiques et les startups montre que l'industrie comprend son importance. Et un nombre croissant de cas d'utilisation réels émergent pour démontrer sa valeur


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Version Mac de WebStorm
Outils de développement JavaScript utiles

SublimeText3 Linux nouvelle version
Dernière version de SublimeText3 Linux

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire

SublimeText3 version anglaise
Recommandé : version Win, prend en charge les invites de code !

Adaptateur de serveur SAP NetWeaver pour Eclipse
Intégrez Eclipse au serveur d'applications SAP NetWeaver.