Maison  >  Article  >  développement back-end  >  Écrire un module d'extension C++ pour Python

Écrire un module d'extension C++ pour Python

WBOY
WBOYavant
2023-04-12 13:34:091543parcourir

Écrire un module d'extension C++ pour Python

Utilisez les extensions C pour fournir des fonctionnalités spécifiques à Python.

Dans l'article précédent, j'ai présenté ​​six interpréteurs Python​​. CPython est l'interpréteur par défaut sur la plupart des systèmes et, selon les sondages, le plus populaire. Ce qui est unique à Python, c'est la possibilité d'écrire des modules Python en C à l'aide d'une API d'extension. L'écriture de modules Python en C vous permet de déplacer du code gourmand en calcul vers C tout en conservant la facilité d'utilisation de Python.

Dans cet article, je vais vous montrer comment écrire un module d'extension C++. Utilisez C++ plutôt que C car la plupart des compilateurs comprennent généralement les deux langages. Je dois énoncer l'inconvénient d'emblée : les modules Python construits de cette façon ne sont pas portables vers d'autres interprètes. Ils fonctionnent uniquement avec l'interpréteur CPython. Par conséquent, si vous recherchez un moyen plus portable d'interagir avec les modules du langage C, pensez à utiliser le module ​​ctypes​​.

Code source

Comme toujours, vous pouvez trouver le code source pertinent sur ​​GitHub​​. Les fichiers C++ de l'entrepôt ont les utilisations suivantes :

  • ​my_py_module.cpp​​ : module Python​​MonModule​​ Définition
  • ​my_py_module.cpp​​: Python 模块​​MyModule​​ 的定义
  • ​my_cpp_class.h​​: 一个头文件 - 只有一个暴露给 Python 的 C++ 类
  • ​my_class_py_type.h/cpp​​: Python 形式的 C++ 类
  • ​pydbg.cpp​​: 用于调试的单独应用程序

本文构建的 Python 模块不会有任何实际用途,但它是一个很好的示例。

构建模块

在查看源代码之前,你可以检查它是否能在你的系统上编译。​​我使用 CMake​​ 来创建构建的配置信息,因此你的系统上必须安装 CMake。为了配置和构建这个模块,可以让 Python 去执行这个过程:

$ python3 setup.py build

或者手动执行:

$ cmake -B build$ cmake --build build

之后,在 ​​/build​​ 子目录下你会有一个名为 ​​MyModule. so​​ 的文件。

定义扩展模块

首先,看一下 ​​my_py_module.cpp​​ 文件,尤其是 ​​PyInit_MyModule​​ 函数:

PyMODINIT_FUNCPyInit_MyModule(void) {PyObject* module = PyModule_Create(&my_module);PyObject *myclass = PyType_FromSpec(&spec_myclass);if (myclass == NULL){return NULL;}Py_INCREF(myclass);if(PyModule_AddObject(module, "MyClass", myclass) < 0){Py_DECREF(myclass);Py_DECREF(module);return NULL;}return module;}

这是本例中最重要的代码,因为它是 CPython 的入口点。一般来说,当一个 Python C 扩展被编译并作为共享对象二进制文件提供时,CPython 会在同名二进制文件中(​​<modulename>.so​</modulename>​)搜索 ​​PyInit_<modulename>​</modulename>​my_cpp_class.h​​ : un fichier d'en-tête - un seul C++ exposé à Python Classe

​my_class_py_type.h/cpp​​ : classe C++ sous forme Python🎜​​pydbg.cpp​​ : application séparée pour le débogage🎜Construire cet article Le Python Le module ne sera d'aucune utilité pratique, mais c'est un bon exemple. 🎜🎜Modules de construction🎜🎜Avant de regarder le code source, vous pouvez vérifier s'il se compile sur votre système. ​​J'utilise CMake​🎜​ pour créer les informations de configuration de build, donc CMake doit être installé sur votre système. Afin de configurer et de construire ce module, vous pouvez laisser Python effectuer ce processus : 🎜
static PyType_Spec spec_myclass = {"MyClass",// namesizeof(MyClassObject) + sizeof(MyClass),// basicsize0,// itemsizePy_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, // flagsMyClass_slots // slots};
🎜 ou manuellement : 🎜
typedef struct {PyObject_HEADint m_value;MyClass*m_myclass;} MyClassObject;
🎜Après cela, après ​​/build​​ Dans le sous-répertoire, vous aurez un fichier appelé ​​MonModule. donc​​ déposer . 🎜🎜Définir le module d'extension🎜🎜Tout d'abord, jetez un œil ​​my_py_module.cpp​​ fichier, en particulier ​​PyInit_MyModule​​ Fonction : 🎜
static PyType_Slot MyClass_slots[] = {{Py_tp_new, (void*)MyClass_new},{Py_tp_init,(void*)MyClass_init},{Py_tp_dealloc, (void*)MyClass_Dealloc},{Py_tp_members, MyClass_members},{Py_tp_methods, MyClass_methods},{0, 0} /* Sentinel */};
🎜C'est le code le plus important dans cet exemple car c'est le point d'entrée à CPython. De manière générale, lorsqu'une extension Python C est compilée et fournie en tant que binaire d'objet partagé, CPython est inclus dans le binaire du même nom (​​<modulename>.so​</modulename>​) Rechercher ​​PyInit_<modulename>​</modulename>​ fonction, et essayez Exécutez-le lors de l'importation. 🎜

无论是声明还是实例,所有 Python 类型都是 ​​PyObject​​ 的一个指针。在此函数的第一部分中,​​module​​ 通过 ​​PyModule_Create(...)​​ 创建的。正如你在 ​​module​​ 详述(​​my_py_module​​,同名文件)中看到的,它没有任何特殊的功能。

之后,调用 ​​PyType_FromSpec​​ 为自定义类型 ​​MyClass​​ 创建一个 Python ​​堆类型​​ 定义。一个堆类型对应于一个 Python 类,然后将它赋值给 ​​MyModule​​ 模块。

注意,如果其中一个函数返回失败,则必须减少以前创建的复制对象的引用计数,以便解释器删除它们。

指定 Python 类型

​MyClass​​ 详述在 ​​my_class_py_type.h​​ 中可以找到,它作为 ​​PyType_Spec​​ 的一个实例:

static PyType_Spec spec_myclass = {"MyClass",// namesizeof(MyClassObject) + sizeof(MyClass),// basicsize0,// itemsizePy_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, // flagsMyClass_slots // slots};

它定义了一些基本类型信息,它的大小包括 Python 表示的大小(​​MyClassObject​​)和普通 C++ 类的大小(​​MyClass​​)。​​MyClassObject​​ 定义如下:

typedef struct {PyObject_HEADint m_value;MyClass*m_myclass;} MyClassObject;

Python 表示的话就是 ​​PyObject​​ 类型,由 ​​PyObject_HEAD​​ 宏和其他一些成员定义。成员 ​​m_value​​ 视为普通类成员,而成员 ​​m_myclass​​ 只能在 C++ 代码内部访问。

​PyType_Slot​​ 定义了一些其他功能:

static PyType_Slot MyClass_slots[] = {{Py_tp_new, (void*)MyClass_new},{Py_tp_init,(void*)MyClass_init},{Py_tp_dealloc, (void*)MyClass_Dealloc},{Py_tp_members, MyClass_members},{Py_tp_methods, MyClass_methods},{0, 0} /* Sentinel */};

在这里,设置了一些初始化和析构函数的跳转,还有普通的类方法和成员,还可以设置其他功能,如分配初始属性字典,但这是可选的。这些定义通常以一个哨兵结束,包含 ​​NULL​​ 值。

要完成类型详述,还包括下面的方法和成员表:

static PyMethodDef MyClass_methods[] = {{"addOne", (PyCFunction)MyClass_addOne, METH_NOARGS,PyDoc_STR("Return an incrmented integer")},{NULL, NULL} /* Sentinel */};static struct PyMemberDef MyClass_members[] = {{"value", T_INT, offsetof(MyClassObject, m_value)},{NULL} /* Sentinel */};

在方法表中,定义了 Python 方法 ​​addOne​​,它指向相关的 C++ 函数 ​​MyClass_addOne​​。它充当了一个包装器,它在 C++ 类中调用 ​​addOne()​​ 方法。

在成员表中,只有一个为演示目的而定义的成员。不幸的是,在 ​​PyMemberDef​​ 中使用的 ​​offsetof​​ 不允许添加 C++ 类型到 ​​MyClassObject​​。如果你试图放置一些 C++ 类型的容器(如 ​​std::optional​​),编译器会抱怨一些内存布局相关的警告。

初始化和析构

​MyClass_new​​ 方法只为 ​​MyClassObject​​ 提供一些初始值,并为其类型分配内存:

PyObject *MyClass_new(PyTypeObject *type, PyObject *args, PyObject *kwds){std::cout << "MtClass_new() called!" << std::endl;MyClassObject *self;self = (MyClassObject*) type->tp_alloc(type, 0);if(self != NULL){ // -> 分配成功// 赋初始值self->m_value = 0;self->m_myclass = NULL; }return (PyObject*) self;}

实际的初始化发生在 ​​MyClass_init​​ 中,它对应于 Python 中的 ​​__init__()​​ 方法:

int MyClass_init(PyObject *self, PyObject *args, PyObject *kwds){((MyClassObject *)self)->m_value = 123;MyClassObject* m = (MyClassObject*)self;m->m_myclass = (MyClass*)PyObject_Malloc(sizeof(MyClass));if(!m->m_myclass){PyErr_SetString(PyExc_RuntimeError, "Memory allocation failed");return -1;}try {new (m->m_myclass) MyClass();} catch (const std::exception& ex) {PyObject_Free(m->m_myclass);m->m_myclass = NULL;m->m_value = 0;PyErr_SetString(PyExc_RuntimeError, ex.what());return -1;} catch(...) {PyObject_Free(m->m_myclass);m->m_myclass = NULL;m->m_value = 0;PyErr_SetString(PyExc_RuntimeError, "Initialization failed");return -1;}return 0;}

如果你想在初始化过程中传递参数,必须在此时调用 ​​PyArg_ParseTuple​​。简单起见,本例将忽略初始化过程中传递的所有参数。在函数的第一部分中,​​PyObject​​ 指针(​​self​​)被强转为 ​​MyClassObject​​ 类型的指针,以便访问其他成员。此外,还分配了 C++ 类的内存,并执行了构造函数。

注意,为了防止内存泄漏,必须仔细执行异常处理和内存分配(还有释放)。当引用计数将为零时,​​MyClass_dealloc​​ 函数负责释放所有相关的堆内存。在文档中有一个章节专门讲述关于 C 和 C++ 扩展的内存管理。

包装方法

从 Python 类中调用相关的 C++ 类方法很简单:

PyObject* MyClass_addOne(PyObject *self, PyObject *args){assert(self);MyClassObject* _self = reinterpret_cast<MyClassObject*>(self);unsigned long val = _self->m_myclass->addOne();return PyLong_FromUnsignedLong(val);}

同样,​​PyObject​​ 参数(​​self​​)被强转为 ​​MyClassObject​​ 类型以便访问 ​​m_myclass​​,它指向 C++ 对应类实例的指针。有了这些信息,调用 ​​addOne()​​ 类方法,并且结果以 ​​Python 整数对象​​ 返回。

3 种方法调试

出于调试目的,在调试配置中编译 CPython 解释器是很有价值的。详细描述参阅 ​​官方文档​​。只要下载了预安装的解释器的其他调试符号,就可以按照下面的步骤进行操作。

GNU 调试器

当然,老式的 ​​GNU 调试器(GDB)​​ 也可以派上用场。源码中包含了一个 ​​gdbinit​​ 文件,定义了一些选项和断点,另外还有一个 ​​gdb.sh​​ 脚本,它会创建一个调试构建并启动一个 GDB 会话:

Gnu 调试器(GDB)对于 Python C 和 C++ 扩展非常有用

Gnu 调试器(GDB)对于 Python C 和 C++ 扩展非常有用

GDB 使用脚本文件 ​​main.py​​ 调用 CPython 解释器,它允许你轻松定义你想要使用 Python 扩展模块执行的所有操作。

C++ 应用

另一种方法是将 CPython 解释器嵌入到一个单独的 C++ 应用程序中。可以在仓库的 ​​pydbg.cpp​​ 文件中找到:

int main(int argc, char *argv[], char *envp[]){Py_SetProgramName(L"DbgPythonCppExtension");Py_Initialize();PyObject *pmodule = PyImport_ImportModule("MyModule");if (!pmodule) {PyErr_Print();std::cerr << "Failed to import module MyModule" << std::endl;return -1;}PyObject *myClassType = PyObject_GetAttrString(pmodule, "MyClass");if (!myClassType) {std::cerr << "Unable to get type MyClass from MyModule" << std::endl;return -1;}PyObject *myClassInstance = PyObject_CallObject(myClassType, NULL);if (!myClassInstance) {std::cerr << "Instantioation of MyClass failed" << std::endl;return -1;}Py_DecRef(myClassInstance); // invoke deallocationreturn 0;}

使用 ​​高级接口​​,可以导入扩展模块并对其执行操作。它允许你在本地 IDE 环境中进行调试,还能让你更好地控制传递或来自扩展模块的变量。

缺点是创建一个额外的应用程序的成本很高。

VSCode 和 VSCodium LLDB 扩展

使用像 ​​CodeLLDB​​ 这样的调试器扩展可能是最方便的调试选项。仓库包含了一些 VSCode/VSCodium 的配置文件,用于构建扩展,如 ​​task.json​​、​​CMake Tools​​ 和调用调试器(​​launch.json​​)。这种方法结合了前面几种方法的优点:在图形 IDE 中调试,在 Python 脚本文件中定义操作,甚至在解释器提示符中动态定义操作。

VSCodium 有一个集成的调试器。

VSCodium 有一个集成的调试器。

用 C++ 扩展 Python

Python 的所有功能也可以从 C 或 C++ 扩展中获得。虽然用 Python 写代码通常认为是一件容易的事情,但用 C 或 C++ 扩展 Python 代码是一件痛苦的事情。另一方面,虽然原生 Python 代码比 C++ 慢,但 C 或 C++ 扩展可以将计算密集型任务提升到原生机器码的速度。

你还必须考虑 ABI 的使用。稳定的 ABI 提供了一种方法来保持旧版本 CPython 的向后兼容性,如 ​​文档​​ 所述。

最后,你必须自己权衡利弊。如果你决定使用 C 语言来扩展 Python 中的一些功能,你已经看到了如何实现它。

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Cet article est reproduit dans:. en cas de violation, veuillez contacter admin@php.cn Supprimer