Maison  >  Article  >  Java  >  Comprendre le principe de mise en œuvre du pool de threads Java dans un article

Comprendre le principe de mise en œuvre du pool de threads Java dans un article

WBOY
WBOYavant
2022-11-03 16:12:291422parcourir

Cet article vous apporte des connaissances pertinentes sur java, qui présente principalement le contenu pertinent sur le principe de mise en œuvre du pool de threads, y compris pourquoi utiliser le pool de threads et le contenu connexe sur l'utilisation du pool de threads. j'espère que cela aide tout le monde.

Comprendre le principe de mise en œuvre du pool de threads Java dans un article

Étude recommandée : "Tutoriel vidéo Java"

1. Pourquoi utiliser un pool de threads

L'utilisation d'un pool de threads est généralement due aux deux raisons suivantes :

  1. Création et destruction fréquentes de les threads consomment des ressources système, les threads peuvent être réutilisés à l'aide de pools de threads.

  2. L'utilisation d'un pool de threads facilite la gestion des threads. Le pool de threads peut gérer dynamiquement le nombre de threads, avoir des files d'attente de blocage, exécuter régulièrement des tâches et isoler l'environnement, etc.

2. Utilisation du pool de threads

/**
 * @author 一灯架构
 * @apiNote 线程池示例
 **/
public class ThreadPoolDemo {

    public static void main(String[] args) {
        // 1. 创建线程池
        ThreadPoolExecutor threadPoolExecutor = new ThreadPoolExecutor(
                3,
                3,
                0L,
                TimeUnit.MILLISECONDS,
                new LinkedBlockingQueue(),
                Executors.defaultThreadFactory(),
                new ThreadPoolExecutor.AbortPolicy());
      
        // 2. 往线程池中提交3个任务
        for (int i = 0; i  {
                System.out.println(Thread.currentThread().getName() + " 关注公众号:一灯架构");
            });
        }
      
        // 3. 关闭线程池
        threadPoolExecutor.shutdown();
    }
}

Résultats de sortie :

pool-1-thread-2 关注公众号:一灯架构
pool-1-thread-1 关注公众号:一灯架构
pool-1-thread-3 关注公众号:一灯架构

L'utilisation du pool de threads est très simple :

  • Appelez le nouveau constructeur ThreadPoolExecutor(), spécifiez les paramètres de base et créez un pool de threads. .

  • Appelez la méthode execute() pour soumettre la tâche Runnable

  • Après utilisation, appelez la méthode shutdown() pour fermer le pool de threads.

Jetons un autre regard sur le rôle des paramètres de base dans la méthode de construction du pool de threads.

3. Paramètres principaux du pool de threads

Il existe sept paramètres principaux dans le pool de threads :

Nom du paramètre Signification du paramètre
int corePoolSize Nombre de threads principaux
int maximumPoolSize Nombre maximum de threads
long keepAliveTime Temps de survie des threads
TimeUnit unit Time unit
BlockingQueue workQueue Block file d'attente
ThreadFactory threadFactory Création de thread factory
Gestionnaire RejectedExecutionHandler stratégie de rejet
  • corePoolSize 核心线程数

    当往线程池中提交任务,会创建线程去处理任务,直到线程数达到corePoolSize,才会往阻塞队列中添加任务。默认情况下,空闲的核心线程并不会被回收,除非配置了allowCoreThreadTimeOut=true。

  • maximumPoolSize 最大线程数

    当线程池中的线程数达到corePoolSize,阻塞队列又满了之后,才会继续创建线程,直到达到maximumPoolSize,另外空闲的非核心线程会被回收。

  • keepAliveTime 线程存活时间

    非核心线程的空闲时间达到了keepAliveTime,将会被回收。

  • TimeUnit 时间单位

    线程存活时间的单位,默认是TimeUnit.MILLISECONDS(毫秒),可选择的有:

    TimeUnit.NANOSECONDS(纳秒) TimeUnit.MICROSECONDS(微秒) TimeUnit.MILLISECONDS(毫秒) TimeUnit.SECONDS(秒) TimeUnit.MINUTES(分钟) TimeUnit.HOURS(小时) TimeUnit.DAYS(天)

  • workQueue 阻塞队列

    当线程池中的线程数达到corePoolSize,再提交的任务就会放到阻塞队列的等待,默认使用的是LinkedBlockingQueue,可选择的有:

    LinkedBlockingQueue(基于链表实现的阻塞队列)

    ArrayBlockingQueue(基于数组实现的阻塞队列)

    SynchronousQueue(只有一个元素的阻塞队列)

    PriorityBlockingQueue(实现了优先级的阻塞队列)

    DelayQueue(实现了延迟功能的阻塞队列)

  • threadFactory 线程创建工厂

    用来创建线程的工厂,默认的是Executors.defaultThreadFactory(),可选择的还有Executors.privilegedThreadFactory()实现了线程优先级。当然也可以自定义线程创建工厂,创建线程的时候最好指定线程名称,便于排查问题。

  • RejectedExecutionHandler 拒绝策略

    当线程池中的线程数达到maximumPoolSize,阻塞队列也满了之后,再往线程池中提交任务,就会触发执行拒绝策略,默认的是AbortPolicy(直接终止,抛出异常),可选择的有:

    AbortPolicy(直接终止,抛出异常)

    DiscardPolicy(默默丢弃,不抛出异常)

    DiscardOldestPolicy(丢弃队列中最旧的任务,执行当前任务)

    CallerRunsPolicy(返回给调用者执行)

4. 线程池工作原理

线程池的工作原理,简单理解如下:

Comprendre le principe de mise en œuvre du pool de threads Java dans un article

  • 当往线程池中提交任务的时候,会先判断线程池中线程数是否核心线程数,如果小于,会创建核心线程并执行任务。

  • 如果线程数大于核心线程数,会判断阻塞队列是否已满,如果没有满,会把任务添加到阻塞队列中等待调度执行。

  • 如果阻塞队列已满,会判断线程数是否小于最大线程数,如果小于,会继续创建最大线程数并执行任务。

  • 如果线程数大于最大线程数,会执行拒绝策略,然后结束。

5. 线程池源码剖析

5.1 线程池的属性

public class ThreadPoolExecutor extends AbstractExecutorService {

    // 线程池的控制状态,Integer长度是32位,前3位用来存储线程池状态,后29位用来存储线程数量
    private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
    // 线程个数所占的位数
    private static final int COUNT_BITS = Integer.SIZE - 3;
    // 线程池的最大容量,2^29-1,约5亿个线程
    private static final int CAPACITY = (1  workers = new HashSet();
    // 等待条件,用来响应中断
    private final Condition termination = mainLock.newCondition();
    // 是否允许回收核心线程
    private volatile boolean allowCoreThreadTimeOut;
    // 线程数的历史峰值
    private int largestPoolSize;

    /**
     * 以下是线程池的七大核心参数
     */
    private volatile int corePoolSize;
    private volatile int maximumPoolSize;
    private volatile long keepAliveTime;
    private final BlockingQueue<runnable> workQueue;
    private volatile ThreadFactory threadFactory;
    private volatile RejectedExecutionHandler handler;

}</runnable>

线程池的控制状态ctl用来存储线程池状态和线程个数,前3位用来存储线程池状态,后29位用来存储线程数量。

设计者多聪明,用一个变量存储了两块内容。

5.2 线程池状态

线程池共有5种状态:

状态名称 状态含义 状态作用
RUNNING 运行中 线程池创建后默认状态,接收新任务,并处理阻塞队列中的任务。
SHUTDOWN 已关闭 调用shutdown方法后处于该状态,不再接收新任务,处理阻塞队列中任务。
STOP 已停止 调用shutdownNow方法后处于该状态,不再新任务,并中断所有线程,丢弃阻塞队列中所有任务。
TIDYING 处理中 所有任务已完成,所有工作线程都已回收,等待调用terminated方法。
TERMINATED 已终止 调用terminated方法后处于该状态,线程池的最终状态。

Comprendre le principe de mise en œuvre du pool de threads Java dans un article

5.3 execute源码

看一下往线程池中提交任务的源码,这是线程池的核心逻辑:

// 往线程池中提交任务
public void execute(Runnable command) {
    // 1. 判断提交的任务是否为null
    if (command == null)
        throw new NullPointerException();

    int c = ctl.get();
    // 2. 判断线程数是否小于核心线程数
    if (workerCountOf(c) <p>execute方法的逻辑也很简单,最终就是调用addWorker方法,把任务添加到worker集合中,再看一下addWorker方法的源码:</p><pre class="brush:php;toolbar:false">// 添加worker
private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    for (; ; ) {
        int c = ctl.get();
        int rs = runStateOf(c);
        // 1. 检查是否允许提交任务
        if (rs >= SHUTDOWN &&
                !(rs == SHUTDOWN &&
                        firstTask == null &&
                        !workQueue.isEmpty()))
            return false;
        // 2. 使用死循环保证添加线程成功
        for (; ; ) {
            int wc = workerCountOf(c);
            // 3. 校验线程数是否超过容量限制
            if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            // 4. 使用CAS修改线程数
            if (compareAndIncrementWorkerCount(c))
                break retry;
            c = ctl.get();
            // 5. 如果线程池状态变了,则从头再来
            if (runStateOf(c) != rs)
                continue retry;
        }
    }
    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        // 6. 把任务和新线程包装成一个worker
        w = new Worker(firstTask);
        final Thread t = w.thread;
        if (t != null) {
            // 7. 加锁,控制并发
            final ReentrantLock mainLock = this.mainLock;
            mainLock.lock();
            try {
                // 8. 再次校验线程池状态是否异常
                int rs = runStateOf(ctl.get());
                if (rs  largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
                mainLock.unlock();
            }
            if (workerAdded) {
                // 12. 启动线程
                t.start();
                workerStarted = true;
            }
        }
    } finally {
        if (!workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}

方法虽然很长,但是逻辑很清晰。就是把任务和线程包装成worker,添加到worker集合,并启动线程。

5.4 worker源码

再看一下worker类的结构:

private final class Worker
        extends AbstractQueuedSynchronizer
        implements Runnable {
    // 工作线程
    final Thread thread;
    // 任务
    Runnable firstTask;

    // 创建worker,并创建一个新线程(用来执行任务)
    Worker(Runnable firstTask) {
        setState(-1);
        this.firstTask = firstTask;
        this.thread = getThreadFactory().newThread(this);
    }
}

5.5 runWorker源码

再看一下run方法的源码:

// 线程执行入口
public void run() {
    runWorker(this);
}

// 线程运行核心方法
final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock();
    boolean completedAbruptly = true;
    try {
        // 1. 如果当前worker中任务是null,就从阻塞队列中获取任务
        while (task != null || (task = getTask()) != null) {
            // 加锁,保证thread不被其他线程中断(除非线程池被中断)
            w.lock();
            // 2. 校验线程池状态,是否需要中断当前线程
            if ((runStateAtLeast(ctl.get(), STOP) ||
                    (Thread.interrupted() &&
                            runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                wt.interrupt();
            try {
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    // 3. 执行run方法
                    task.run();
                } catch (RuntimeException x) {
                    thrown = x;
                    throw x;
                } catch (Error x) {
                    thrown = x;
                    throw x;
                } catch (Throwable x) {
                    thrown = x;
                    throw new Error(x);
                } finally {
                    afterExecute(task, thrown);
                }
            } finally {
                task = null;
                w.completedTasks++;
                // 解锁
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
        // 4. 从worker集合删除当前worker
        processWorkerExit(w, completedAbruptly);
    }
}

runWorker方法逻辑也很简单,就是不断从阻塞队列中拉取任务并执行。

再看一下从阻塞队列中拉取任务的逻辑:

// 从阻塞队列中拉取任务
private Runnable getTask() {
    boolean timedOut = false;
    for (; ; ) {
        int c = ctl.get();
        int rs = runStateOf(c);
        // 1. 如果线程池已经停了,或者阻塞队列是空,就回收当前线程
        if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) {
            decrementWorkerCount();
            return null;
        }
        int wc = workerCountOf(c);
        // 2. 再次判断是否需要回收线程
        boolean timed = allowCoreThreadTimeOut || wc > corePoolSize;
        if ((wc > maximumPoolSize || (timed && timedOut))
                && (wc > 1 || workQueue.isEmpty())) {
            if (compareAndDecrementWorkerCount(c))
                return null;
            continue;
        }
        try {
            // 3. 从阻塞队列中拉取任务
            Runnable r = timed ?
                    workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) :
                    workQueue.take();
            if (r != null)
                return r;
            timedOut = true;
        } catch (InterruptedException retry) {
            timedOut = false;
        }
    }
}

推荐学习:《java视频教程

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Cet article est reproduit dans:. en cas de violation, veuillez contacter admin@php.cn Supprimer