Maison >Opération et maintenance >Docker >Docker prend-il en charge les GPU ?

Docker prend-il en charge les GPU ?

尚
original
2020-04-02 17:31:093019parcourir

Docker prend-il en charge les GPU ?

Docker prend en charge le GPU et Docker peut utiliser le GPU via nvidia-docker2. Configurez le runtime pour utiliser nvidia dans le fichier daemon.json. Après avoir démarré le conteneur, exécutez nvidia-smi pour voir tous les GPU.

Introduction à la méthode de montage du GPU avec docker :

Utilisez nvidia-docker2

En bref, en utilisant nvidia-docker2, vous pouvez utiliser le GPU sans effort, juste ce dont vous avez besoin pour configurer le runtime. Après avoir démarré le conteneur en utilisant nvidia

cat /etc/docker/daemon.json
{
    "default-runtime": "nvidia",
    "runtimes": {
        "nvidia": {
            "path": "/usr/bin/nvidia-container-runtime",
            "runtimeArgs": []
        }
    },
    "exec-opts": ["native.cgroupdriver=systemd"]
}

, vous pouvez voir toutes les cartes GPU en exécutant nvidia-smi :

[root@localhost] docker run -it 98b41a1e975d bash
root@6db1dd28459d:/notebooks# nvidia-smi

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 410.79       Driver Version: 410.79       CUDA Version: 10.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla V100-SXM2...  On   | 00000000:8A:00.0 Off |                    0 |
| N/A   40C    P0    57W / 300W |   4053MiB / 16130MiB |      4%      Default |
+-------------------------------+----------------------+----------------------+
|   1  Tesla V100-SXM2...  On   | 00000000:8B:00.0 Off |                    0 |
| N/A   38C    P0    40W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   2  Tesla V100-SXM2...  On   | 00000000:8C:00.0 Off |                    0 |
| N/A   42C    P0    46W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   3  Tesla V100-SXM2...  On   | 00000000:8D:00.0 Off |                    0 |
| N/A   39C    P0    40W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   4  Tesla V100-SXM2...  On   | 00000000:B3:00.0 Off |                    0 |
| N/A   39C    P0    42W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   5  Tesla V100-SXM2...  On   | 00000000:B4:00.0 Off |                    0 |
| N/A   41C    P0    57W / 300W |   7279MiB / 16130MiB |      4%      Default |
+-------------------------------+----------------------+----------------------+
|   6  Tesla V100-SXM2...  On   | 00000000:B5:00.0 Off |                    0 |
| N/A   40C    P0    45W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
|   7  Tesla V100-SXM2...  On   | 00000000:B6:00.0 Off |                    0 |
| N/A   41C    P0    44W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+

Vous pouvez ajouter une partie de la bibliothèque via NVIDIA_DRIVER_CAPABILITIES. Grâce à NVIDIA_VISIBLE_DEVICES, vous ne pouvez utiliser que certaines cartes GPU

[root@localhost cuda-9.0]# docker run -it  --env NVIDIA_DRIVER_CAPABILITIES="compute,utility"  --env NVIDIA_VISIBLE_DEVICES=0,1 98b41a1e975d bash
root@97bf127ff83a:/notebooks# nvidia-smi
Tue Oct 15 09:29:45 2019
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 410.79       Driver Version: 410.79       CUDA Version: 10.0     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla V100-SXM2...  On   | 00000000:8A:00.0 Off |                    0 |
| N/A   39C    P0    57W / 300W |   4053MiB / 16130MiB |      3%      Default |
+-------------------------------+----------------------+----------------------+
|   1  Tesla V100-SXM2...  On   | 00000000:8B:00.0 Off |                    0 |
| N/A   37C    P0    40W / 300W |      0MiB / 16130MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
+-----------------------------------------------------------------------------+

Pour plus de didacticiels connexes, veuillez faire attention à la colonne tutoriel docker du site Web PHP chinois.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn