Maison >Java >javaDidacticiel >Quelles sont les méthodes de tri séquentiel ?
Tutoriel recommandé : tutoriel Java
En Informatique et Mathématiques, un algorithme de Tri (Anglais : Sorting algorithm) est un algorithme qui peut organiser une série de données selon une méthode de tri spécifique. Cet article résumera plusieurs algorithmes de tri couramment utilisés, notamment le tri à bulles, le tri par sélection, le tri par insertion, le tri rapide et le tri par fusion.
1. Tri des bulles
Diagramme schématique
Comprendre : En parcourant de manière itérative la liste à trier, en comparant chaque paire d'éléments adjacents et en les échangeant s'ils sont dans le mauvais ordre.
Code :
public class BubbleSort { // logic to sort the elements public static void bubble_srt(int array[]) { int n = array.length; int k; for (int m = n; m >= 0; m--) { for (int i = 0; i < n - 1; i++) { k = i + 1; if (array[i] > array[k]) { swapNumbers(i, k, array); } } printNumbers(array); } } private static void swapNumbers(int i, int j, int[] array) { int temp; temp = array[i]; array[i] = array[j]; array[j] = temp; } private static void printNumbers(int[] input) { for (int i = 0; i < input.length; i++) { System.out.print(input[i] + ", "); } System.out.println("\n"); } public static void main(String[] args) { int[] input = { 4, 2, 9, 6, 23, 12, 34, 0, 1 }; bubble_srt(input); } }
2. Tri de sélection
Principe Figure
Compréhension : La boucle interne trouve la prochaine valeur minimale (ou maximale) et la boucle externe met la valeur dans c'est un emplacement approprié.
Code :
public class SelectionSort { public static int[] doSelectionSort(int[] arr){ for (int i = 0; i < arr.length - 1; i++) { int index = i; for (int j = i + 1; j < arr.length; j++) if (arr[j] < arr[index]) index = j; int smallerNumber = arr[index]; arr[index] = arr[i]; arr[i] = smallerNumber; } return arr; } public static void main(String a[]){ int[] arr1 = {10,34,2,56,7,67,88,42}; int[] arr2 = doSelectionSort(arr1); for(int i:arr2){ System.out.print(i); System.out.print(", "); } } }
3. Tri par insertion
Principe Figure
Compréhension : Chaque étape insère un enregistrement à trier dans la séquence ordonnée précédemment triée jusqu'à ce que tous les éléments soient insérés.
Code :
public class InsertionSort { public static void main(String a[]){ int[] arr1 = {10,34,2,56,7,67,88,42}; int[] arr2 = doInsertionSort(arr1); for(int i:arr2){ System.out.print(i); System.out.print(", "); } } public static int[] doInsertionSort(int[] input){ int temp; for (int i = 1; i < input.length; i++) { for(int j = i ; j > 0 ; j--){ if(input[j] < input[j-1]){ temp = input[j]; input[j] = input[j-1]; input[j-1] = temp; } } } return input; } }
4. Tri rapide
Diagramme schématique
Compréhension : Décomposer le problème d'origine en plusieurs sous-problèmes de plus petite taille mais de structure similaire au problème d'origine, et résoudre ceux-ci résoudre les sous-problèmes de manière récursive, puis combiner les solutions de ces sous-problèmes en une solution au problème d'origine.
Code :
public class QuickSort { private int array[]; private int length; public void sort(int[] inputArr) { if (inputArr == null || inputArr.length == 0) { return; } this.array = inputArr; length = inputArr.length; quickSort(0, length - 1); } private void quickSort(int lowerIndex, int higherIndex) { int i = lowerIndex; int j = higherIndex; // calculate pivot number, I am taking pivot as middle index number int pivot = array[lowerIndex+(higherIndex-lowerIndex)/2]; // Divide into two arrays while (i <= j) { /** * In each iteration, we will identify a number from left side which * is greater then the pivot value, and also we will identify a number * from right side which is less then the pivot value. Once the search * is done, then we exchange both numbers. */ while (array[i] < pivot) { i++; } while (array[j] > pivot) { j--; } if (i <= j) { exchangeNumbers(i, j); //move index to next position on both sides i++; j--; } } // call quickSort() method recursively if (lowerIndex < j) quickSort(lowerIndex, j); if (i < higherIndex) quickSort(i, higherIndex); } private void exchangeNumbers(int i, int j) { int temp = array[i]; array[i] = array[j]; array[j] = temp; } public static void main(String a[]){ MyQuickSort sorter = new MyQuickSort(); int[] input = {24,2,45,20,56,75,2,56,99,53,12}; sorter.sort(input); for(int i:input){ System.out.print(i); System.out.print(" "); } } }
5. Tri par fusion
Principe Figure
Compréhension : Diviser la séquence à trier en plusieurs sous-séquences de longueur 1, puis diviser ces séquences en deux, fusionnez deux ; obtenez plusieurs séquences ordonnées de longueur 2, puis fusionnez ces séquences deux par deux ; obtenez plusieurs séquences ordonnées de longueur 4, puis fusionnez-les deux par deux jusqu'à ce qu'elles soient directement fusionnées en une seule séquence ;
Code :
public class MergeSort { private int[] array; private int[] tempMergArr; private int length; public static void main(String a[]){ int[] inputArr = {45,23,11,89,77,98,4,28,65,43}; MyMergeSort mms = new MyMergeSort(); mms.sort(inputArr); for(int i:inputArr){ System.out.print(i); System.out.print(" "); } } public void sort(int inputArr[]) { this.array = inputArr; this.length = inputArr.length; this.tempMergArr = new int[length]; doMergeSort(0, length - 1); } private void doMergeSort(int lowerIndex, int higherIndex) { if (lowerIndex < higherIndex) { int middle = lowerIndex + (higherIndex - lowerIndex) / 2; // Below step sorts the left side of the array doMergeSort(lowerIndex, middle); // Below step sorts the right side of the array doMergeSort(middle + 1, higherIndex); // Now merge both sides mergeParts(lowerIndex, middle, higherIndex); } } private void mergeParts(int lowerIndex, int middle, int higherIndex) { for (int i = lowerIndex; i <= higherIndex; i++) { tempMergArr[i] = array[i]; } int i = lowerIndex; int j = middle + 1; int k = lowerIndex; while (i <= middle && j <= higherIndex) { if (tempMergArr[i] <= tempMergArr[j]) { array[k] = tempMergArr[i]; i++; } else { array[k] = tempMergArr[j]; j++; } k++; } while (i <= middle) { array[k] = tempMergArr[i]; k++; i++; } } }
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!