recherche
Maisondéveloppement back-endTutoriel PythonQue sont les générateurs en python ? A quoi servent les générateurs ?

Dans l'article suivant, nous découvrirons ce qu'est un générateur en python. Découvrez ce qu'est un générateur Python et quel rôle un générateur peut jouer dans la programmation python.

Qu'est-ce qu'un générateur Python ?

Avec la génération de liste, nous pouvons créer une liste directement. Cependant, en raison de contraintes de mémoire, la capacité de la liste est définitivement limitée. De plus, créer une liste contenant 1 million d'éléments prend non seulement beaucoup d'espace de stockage, mais si nous n'avons besoin d'accéder qu'aux premiers éléments, l'espace occupé par la plupart des éléments suivants sera gaspillé.

Donc, si les éléments de la liste peuvent être calculés selon un certain algorithme, pouvons-nous calculer en continu les éléments suivants pendant la boucle ? De cette façon, vous n'avez pas besoin de créer une liste complète, ce qui économise beaucoup d'espace. En Python, ce mécanisme de bouclage et de calcul à la fois s'appelle un générateur : générateur.

Pour créer un générateur, il existe de nombreuses façons. La première méthode est très simple. Il suffit de remplacer [] par () dans une expression de génération de liste pour créer un générateur :

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

Après avoir créé un générateur, passez la boucle for pour itérer. dessus et vous n'avez pas besoin de vous soucier des erreurs StopIteration.

le générateur est très puissant. Si l'algorithme de calcul est relativement complexe et ne peut pas être implémenté à l'aide d'une boucle for similaire à la génération de liste, il peut également être implémenté à l'aide d'une fonction.

Par exemple, dans la célèbre séquence de Fibonacci, à l'exception du premier et du deuxième nombres, n'importe quel nombre peut être obtenu en additionnant les deux premiers nombres :

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return &#39;done&#39;

Notez que l'énoncé d'affectation :

a, b = b, a + b

est équivalent à :

t = (b, a + b) # t是一个tuplea = t[0]b = t[1]

mais il est possible d'attribuer une valeur sans écrire explicitement la variable temporaire t.

La fonction ci-dessus peut générer les N premiers nombres de la séquence de Fibonacci :

>>> fib(6)112358&#39;done&#39;

En regardant attentivement, vous pouvez voir que la fonction fib définit en fait la séquence de Fibonacci. Les règles de calcul peuvent commencer à partir de le premier élément et calculer les éléments suivants. Cette logique est en fait très similaire au générateur.

En d'autres termes, la fonction ci-dessus n'est qu'à un pas du générateur. Pour transformer la fonction fib en générateur, changez simplement print(b) en rendement b :

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:        yield b
        a, b = b, a + b
        n = n + 1
    return &#39;done&#39;

C'est une autre façon de définir un générateur. Si une définition de fonction contient le mot-clé rendement, alors la fonction n'est plus une fonction ordinaire, mais un générateur :

>>> f = fib(6)
>>> f<generator object fib at 0x104feaaa0>

Ici, la chose la plus difficile à comprendre est que le flux d'exécution du générateur et de la fonction est différent. . Les fonctions sont exécutées séquentiellement et sont renvoyées lorsqu'elles rencontrent une instruction return ou la dernière ligne d'instructions de fonction. La fonction qui devient un générateur est exécutée à chaque fois que next() est appelée, revient lorsqu'elle rencontre une instruction rendement et continue l'exécution à partir de l'instruction rendement renvoyée la dernière fois lors de sa nouvelle exécution.

Ce qui précède est tout le contenu de cet article. Cet article présente principalement les connaissances liées au générateur dans python. J'espère que vous pourrez utiliser les informations pour comprendre le contenu ci-dessus. J'espère que ce que j'ai décrit dans cet article vous sera utile et vous facilitera l'apprentissage de Python.

Pour plus de connaissances connexes, veuillez visiter la colonne Tutoriel Python du site Web php chinois.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Comment le choix entre les listes et les tableaux a-t-il un impact sur les performances globales d'une application Python traitant de grands ensembles de données?Comment le choix entre les listes et les tableaux a-t-il un impact sur les performances globales d'une application Python traitant de grands ensembles de données?May 03, 2025 am 12:11 AM

ForhandlingLargedatasetSInpython, UsenumpyArraysforbetterperformance.1) NumpyArraysAremeMory-EfficientAndFasterFornumericalOperations.2) EvitUnneceSsaryTypeConversions.3) Le effet de levier

Expliquez comment la mémoire est allouée aux listes par rapport aux tableaux dans Python.Expliquez comment la mémoire est allouée aux listes par rapport aux tableaux dans Python.May 03, 2025 am 12:10 AM

Inpython, listSusedynamicMemoryallocation withover-allocation, whileLumpyArraySallocateFixedMemory.1) listsallocatemoreMoryThreededEdededInitialement, redimensipwenessary.2) NumpyArraySallocateExactMemoryForElements, offrantwectable usinessflexibilité.

Comment spécifiez-vous le type d'éléments de données dans un tableau Python?Comment spécifiez-vous le type d'éléments de données dans un tableau Python?May 03, 2025 am 12:06 AM

Inpython, YouCanscthedatatatypeyfelemememedenernSspant.1) usenpynernrump.1) usenpynerp.dloatp.ploatm64, formateur préséconstrolatatype.

Qu'est-ce que Numpy et pourquoi est-il important pour l'informatique numérique dans Python?Qu'est-ce que Numpy et pourquoi est-il important pour l'informatique numérique dans Python?May 03, 2025 am 12:03 AM

NumpyissentialFornumericalComputingInpythondutOtsSpeed, MemoryEfficiency et ComprehenSiveMathematicalFunctions.1) It'sfastBecauseitPerformSoperations INC.2) NumpyArraySareMoremory-EfficientThanpythonlists.3)

Discutez du concept de «l'allocation de la mémoire contigu» et de son importance pour les tableaux.Discutez du concept de «l'allocation de la mémoire contigu» et de son importance pour les tableaux.May 03, 2025 am 12:01 AM

ContigusMymoryallocationiscrucialforAraySBauseitallowsforefficient andfastelementAccess.1) iTenablesConstanttimeAccess, o (1), duetoDirectAddressCalculation.2) itimproveScacheefficiendyAllowingMultipleElementFetchesperCacheline.3) itsimplieniesMemorymorymorymorymorymory

Comment coupez-vous une liste de python?Comment coupez-vous une liste de python?May 02, 2025 am 12:14 AM

SlitingyPapyThonListIsDoneUsingTheSyntaxList [Démarrage: arrêt: étape] .He'showitworks: 1) startisheindexofthefirStelementoinclude.2) stopisTheIndexoftheFirstelementsoexclude.3) StepistheincrementBetweenselans.it'susefulfactingPortationSoListShsandCanusegeg

Quelles sont les opérations communes qui peuvent être effectuées sur des tableaux Numpy?Quelles sont les opérations communes qui peuvent être effectuées sur des tableaux Numpy?May 02, 2025 am 12:09 AM

NumpyAllowsForvariousOperations ONARRAYS: 1) BasicarithmeticLikeaddition, Soustraction, Multiplication, anddivision; 2) AdvancedOperationSuchasmatrixMultiplication; 3) Element-Wiseoperations withoutExplicitloop

Comment les tableaux sont-ils utilisés dans l'analyse des données avec Python?Comment les tableaux sont-ils utilisés dans l'analyse des données avec Python?May 02, 2025 am 12:09 AM

ArraySinpython, en particulier ThroughNumpyandPandas, aressentialfordataanalysis, offingspeeedAfficiency.1) numpyarrayablefficienthandlingoflargedatasetsandComplexOperationsLikEMoVingAverages.2)

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

SublimeText3 version anglaise

SublimeText3 version anglaise

Recommandé : version Win, prend en charge les invites de code !

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

SublimeText3 Linux nouvelle version

SublimeText3 Linux nouvelle version

Dernière version de SublimeText3 Linux

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Puissant environnement de développement intégré PHP