Maison >développement back-end >Tutoriel Python >code de vérification d'identification python
Cette fois, je vous apporte le code de vérification de reconnaissance python, quelles sont les précautions pour le code de vérification de reconnaissance python, ce qui suit est un cas pratique, jetons un coup d'oeil.
En plus d'utiliser le package PIL traditionnel pour traiter les images, puis d'utiliser pytessert+OCR pour identifier les accidents, vous pouvez également utiliser la formation Tessorflow pour identifier les codes de vérification.
La plupart du code de cet article est réimprimé, avec seulement quelques modifications.
Le code s'exécute dans l'environnement Linux et Tessorflow ne prend pas en charge Python 2.7 pour Windows.
code gen_captcha.py.
#coding=utf-8 from captcha.image import ImageCaptcha # pip install captcha import numpy as np import matplotlib.pyplot as plt from PIL import Image import random # 验证码中的字符, 就不用汉字了 number = ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9'] alphabet = ['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'] ALPHABET = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z'] ''' number=['0','1','2','3','4','5','6','7','8','9'] alphabet =[] ALPHABET =[] ''' # 验证码一般都无视大小写;验证码长度4个字符 def random_captcha_text(char_set=number + alphabet + ALPHABET, captcha_size=4): captcha_text = [] for i in range(captcha_size): c = random.choice(char_set) captcha_text.append(c) return captcha_text # 生成字符对应的验证码 def gen_captcha_text_and_image(): while(1): image = ImageCaptcha() captcha_text = random_captcha_text() captcha_text = ''.join(captcha_text) captcha = image.generate(captcha_text) #image.write(captcha_text, captcha_text + '.jpg') # 写到文件 captcha_image = Image.open(captcha) #captcha_image.show() captcha_image = np.array(captcha_image) if captcha_image.shape==(60,160,3): break return captcha_text, captcha_image if name == 'main': # 测试 text, image = gen_captcha_text_and_image() print image gray = np.mean(image, -1) print gray print image.shape print gray.shape f = plt.figure() ax = f.add_subplot(111) ax.text(0.1, 0.9, text, ha='center', va='center', transform=ax.transAxes) plt.imshow(image) plt.show()
code train.py.
#coding=utf-8 from gen_captcha import gen_captcha_text_and_image from gen_captcha import number from gen_captcha import alphabet from gen_captcha import ALPHABET import numpy as np import tensorflow as tf """ text, image = gen_captcha_text_and_image() print "验证码图像channel:", image.shape # (60, 160, 3) # 图像大小 IMAGE_HEIGHT = 60 IMAGE_WIDTH = 160 MAX_CAPTCHA = len(text) print "验证码文本最长字符数", MAX_CAPTCHA # 验证码最长4字符; 我全部固定为4,可以不固定. 如果验证码长度小于4,用'_'补齐 """ IMAGE_HEIGHT = 60 IMAGE_WIDTH = 160 MAX_CAPTCHA = 4 # 把彩色图像转为灰度图像(色彩对识别验证码没有什么用) def convert2gray(img): if len(img.shape) > 2: gray = np.mean(img, -1) # 上面的转法较快,正规转法如下 # r, g, b = img[:,:,0], img[:,:,1], img[:,:,2] # gray = 0.2989 * r + 0.5870 * g + 0.1140 * b return gray else: return img """ cnn在图像大小是2的倍数时性能最高, 如果你用的图像大小不是2的倍数,可以在图像边缘补无用像素。 np.pad(image,((2,3),(2,2)), 'constant', constant_values=(255,)) # 在图像上补2行,下补3行,左补2行,右补2行 """ # 文本转向量 char_set = number + alphabet + ALPHABET + ['_'] # 如果验证码长度小于4, '_'用来补齐 CHAR_SET_LEN = len(char_set) def text2vec(text): text_len = len(text) if text_len > MAX_CAPTCHA: raise ValueError('验证码最长4个字符') vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN) def char2pos(c): if c == '_': k = 62 return k k = ord(c) - 48 if k > 9: k = ord(c) - 55 if k > 35: k = ord(c) - 61 if k > 61: raise ValueError('No Map') return k for i, c in enumerate(text): #print text idx = i * CHAR_SET_LEN + char2pos(c) #print i,CHAR_SET_LEN,char2pos(c),idx vector[idx] = 1 return vector #print text2vec('1aZ_') # 向量转回文本 def vec2text(vec): char_pos = vec.nonzero()[0] text = [] for i, c in enumerate(char_pos): char_at_pos = i # c/63 char_idx = c % CHAR_SET_LEN if char_idx < 10: char_code = char_idx + ord('0') elif char_idx < 36: char_code = char_idx - 10 + ord('A') elif char_idx < 62: char_code = char_idx - 36 + ord('a') elif char_idx == 62: char_code = ord('_') else: raise ValueError('error') text.append(chr(char_code)) return "".join(text) """ #向量(大小MAX_CAPTCHA*CHAR_SET_LEN)用0,1编码 每63个编码一个字符,这样顺利有,字符也有 vec = text2vec("F5Sd") text = vec2text(vec) print(text) # F5Sd vec = text2vec("SFd5") text = vec2text(vec) print(text) # SFd5 """ # 生成一个训练batch def get_next_batch(batch_size=128): batch_x = np.zeros([batch_size, IMAGE_HEIGHT * IMAGE_WIDTH]) batch_y = np.zeros([batch_size, MAX_CAPTCHA * CHAR_SET_LEN]) # 有时生成图像大小不是(60, 160, 3) def wrap_gen_captcha_text_and_image(): while True: text, image = gen_captcha_text_and_image() if image.shape == (60, 160, 3): return text, image for i in range(batch_size): text, image = wrap_gen_captcha_text_and_image() image = convert2gray(image) batch_x[i, :] = image.flatten() / 255 # (image.flatten()-128)/128 mean为0 batch_y[i, :] = text2vec(text) return batch_x, batch_y #################################################################### X = tf.placeholder(tf.float32, [None, IMAGE_HEIGHT * IMAGE_WIDTH]) Y = tf.placeholder(tf.float32, [None, MAX_CAPTCHA * CHAR_SET_LEN]) keep_prob = tf.placeholder(tf.float32) # dropout # 定义CNN def crack_captcha_cnn(w_alpha=0.01, b_alpha=0.1): x = tf.reshape(X, shape=[-1, IMAGE_HEIGHT, IMAGE_WIDTH, 1]) # w_c1_alpha = np.sqrt(2.0/(IMAGE_HEIGHT*IMAGE_WIDTH)) # # w_c2_alpha = np.sqrt(2.0/(3*3*32)) # w_c3_alpha = np.sqrt(2.0/(3*3*64)) # w_d1_alpha = np.sqrt(2.0/(8*32*64)) # out_alpha = np.sqrt(2.0/1024) # 3 conv layer w_c1 = tf.Variable(w_alpha * tf.random_normal([3, 3, 1, 32])) b_c1 = tf.Variable(b_alpha * tf.random_normal([32])) conv1 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(x, w_c1, strides=[1, 1, 1, 1], padding='SAME'), b_c1)) conv1 = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv1 = tf.nn.dropout(conv1, keep_prob) w_c2 = tf.Variable(w_alpha * tf.random_normal([3, 3, 32, 64])) b_c2 = tf.Variable(b_alpha * tf.random_normal([64])) conv2 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv1, w_c2, strides=[1, 1, 1, 1], padding='SAME'), b_c2)) conv2 = tf.nn.max_pool(conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv2 = tf.nn.dropout(conv2, keep_prob) w_c3 = tf.Variable(w_alpha * tf.random_normal([3, 3, 64, 64])) b_c3 = tf.Variable(b_alpha * tf.random_normal([64])) conv3 = tf.nn.relu(tf.nn.bias_add(tf.nn.conv2d(conv2, w_c3, strides=[1, 1, 1, 1], padding='SAME'), b_c3)) conv3 = tf.nn.max_pool(conv3, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME') conv3 = tf.nn.dropout(conv3, keep_prob) # Fully connected layer w_d = tf.Variable(w_alpha * tf.random_normal([8 * 32 * 40, 1024])) b_d = tf.Variable(b_alpha * tf.random_normal([1024])) dense = tf.reshape(conv3, [-1, w_d.get_shape().as_list()[0]]) dense = tf.nn.relu(tf.add(tf.matmul(dense, w_d), b_d)) dense = tf.nn.dropout(dense, keep_prob) w_out = tf.Variable(w_alpha * tf.random_normal([1024, MAX_CAPTCHA * CHAR_SET_LEN])) b_out = tf.Variable(b_alpha * tf.random_normal([MAX_CAPTCHA * CHAR_SET_LEN])) out = tf.add(tf.matmul(dense, w_out), b_out) # out = tf.nn.softmax(out) return out # 训练 def train_crack_captcha_cnn(): import time start_time=time.time() output = crack_captcha_cnn() # loss #loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(output, Y)) loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=output, labels=Y)) # 最后一层用来分类的softmax和sigmoid有什么不同? # optimizer 为了加快训练 learning_rate应该开始大,然后慢慢衰 optimizer = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss) predict = tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]) max_idx_p = tf.argmax(predict, 2) max_idx_l = tf.argmax(tf.reshape(Y, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) correct_pred = tf.equal(max_idx_p, max_idx_l) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) saver = tf.train.Saver() with tf.Session() as sess: sess.run(tf.global_variables_initializer()) step = 0 while True: batch_x, batch_y = get_next_batch(64) _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y, keep_prob: 0.75}) print time.strftime('%Y-%m-%d %H:%M:%S',time.localtime(time.time())),step, loss_ # 每100 step计算一次准确率 if step % 100 == 0: batch_x_test, batch_y_test = get_next_batch(100) acc = sess.run(accuracy, feed_dict={X: batch_x_test, Y: batch_y_test, keep_prob: 1.}) print u'***************************************************************第%s次的准确率为%s'%(step, acc) # 如果准确率大于50%,保存模型,完成训练 if acc > 0.9: ##我这里设了0.9,设得越大训练要花的时间越长,如果设得过于接近1,很难达到。如果使用cpu,花的时间很长,cpu占用很高电脑发烫。 saver.save(sess, "crack_capcha.model", global_step=step) print time.time()-start_time break step += 1 train_crack_captcha_cnn()
Code de test :
output = crack_captcha_cnn() saver = tf.train.Saver() sess = tf.Session() saver.restore(sess, tf.train.latest_checkpoint('.')) while(1): text, image = gen_captcha_text_and_image() image = convert2gray(image) image = image.flatten() / 255 predict = tf.argmax(tf.reshape(output, [-1, MAX_CAPTCHA, CHAR_SET_LEN]), 2) text_list = sess.run(predict, feed_dict={X: [image], keep_prob: 1}) predict_text = text_list[0].tolist() vector = np.zeros(MAX_CAPTCHA * CHAR_SET_LEN) i = 0 for t in predict_text: vector[i * 63 + t] = 1 i += 1 # break print("正确: {} 预测: {}".format(text, vec2text(vector)))
Si vous souhaitez tester l'effet du code rapidement, ne définissez pas trop de caractères dans le code de vérification, par exemple, 0123 suffit.
Je pense que vous maîtrisez la méthode après avoir lu le cas dans cet article. Pour des informations plus intéressantes, veuillez prêter attention aux autres articles connexes sur le site Web chinois de php !
Lecture recommandée :
Comment implémenter la distance Mahalanobis en Python
Comment lire par lots des fichiers txt au format DataFrame dans Python
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!