Maison  >  Article  >  développement back-end  >  Méthode Python pour compléter la régression logistique

Méthode Python pour compléter la régression logistique

Y2J
Y2Joriginal
2017-05-11 11:20:531996parcourir

Cet article présente principalement un exemple de mise en œuvre de la régression logistique en Python. Il s'agit d'une expérience dans le cours d'apprentissage automatique. Elle est compilée et partagée avec tous les amis qui en ont besoin peuvent s'y référer et l'apprendre. un regard ensemble.

Le principe mis en œuvre dans cet article est très simple, et la méthode d'optimisation est la descente de gradient. Il y aura les résultats des tests plus tard.

Jetons d'abord un coup d'œil à l'exemple de code implémenté :

# coding=utf-8
from math import exp

import matplotlib.pyplot as plt
import numpy as np
from sklearn.datasets.samples_generator import make_blobs


def sigmoid(num):
 '''

 :param num: 待计算的x
 :return: sigmoid之后的数值
 '''
 if type(num) == int or type(num) == float:
  return 1.0 / (1 + exp(-1 * num))
 else:
  raise ValueError, 'only int or float data can compute sigmoid'


class logistic():
 def init(self, x, y): 
  if type(x) == type(y) == list:
   self.x = np.array(x)
   self.y = np.array(y)
  elif type(x) == type(y) == np.ndarray:
   self.x = x
   self.y = y
  else:
   raise ValueError, 'input data error'

 def sigmoid(self, x):
  '''

  :param x: 输入向量
  :return: 对输入向量整体进行simgoid计算后的向量结果
  '''
  s = np.frompyfunc(lambda x: sigmoid(x), 1, 1)
  return s(x)

 def train_with_punish(self, alpha, errors, punish=0.0001):
  '''

  :param alpha: alpha为学习速率
  :param errors: 误差小于多少时停止迭代的阈值
  :param punish: 惩罚系数
  :param times: 最大迭代次数
  :return:
  '''
  self.punish = punish
  dimension = self.x.shape[1]
  self.theta = np.random.random(dimension)
  compute_error = 100000000
  times = 0
  while compute_error > errors:
   res = np.dot(self.x, self.theta)
   delta = self.sigmoid(res) - self.y
   self.theta = self.theta - alpha * np.dot(self.x.T, delta) - punish * self.theta # 带惩罚的梯度下降方法
   compute_error = np.sum(delta)
   times += 1

 def predict(self, x):
  '''

  :param x: 给入新的未标注的向量
  :return: 按照计算出的参数返回判定的类别
  '''
  x = np.array(x)
  if self.sigmoid(np.dot(x, self.theta)) > 0.5:
   return 1
  else:
   return 0


def test1():
 '''
 用来进行测试和画图,展现效果
 :return:
 '''
 x, y = make_blobs(n_samples=200, centers=2, n_features=2, random_state=0, center_box=(10, 20))
 x1 = []
 y1 = []
 x2 = []
 y2 = []
 for i in range(len(y)):
  if y[i] == 0:
   x1.append(x[i][0])
   y1.append(x[i][1])
  elif y[i] == 1:
   x2.append(x[i][0])
   y2.append(x[i][1])
 # 以上均为处理数据,生成出两类数据
 p = logistic(x, y)
 p.train_with_punish(alpha=0.00001, errors=0.005, punish=0.01) # 步长是0.00001,最大允许误差是0.005,惩罚系数是0.01
 x_test = np.arange(10, 20, 0.01)
 y_test = (-1 * p.theta[0] / p.theta[1]) * x_test
 plt.plot(x_test, y_test, c='g', label='logistic_line')
 plt.scatter(x1, y1, c='r', label='positive')
 plt.scatter(x2, y2, c='b', label='negative')
 plt.legend(loc=2)
 plt.title('punish value = ' + p.punish.str())
 plt.show()


if name == 'main':
 test1()

Le résultat en cours d'exécution est tel qu'indiqué ci-dessous

Résumé

[Recommandations associées]

1. Tutoriel vidéo gratuit sur Python

2 Tutoriel d'introduction de base de Python

3. >

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn