Maison >Java >javaDidacticiel >Une introduction détaillée au modèle de stratégie des modèles de conception Java
En 1984, j'ai obtenu un diplôme universitaire en génie mécanique et j'ai commencé ma carrière en tant que ingénieur logiciel. Après avoir autodidacte le langage C, il s'engage dans le développement d'une interface utilisateur graphique (GUI) de 50 000 lignes pour Unix en 1985. L'ensemble du processus a été très relaxant et agréable.
Fin 1985, mon travail de codage était terminé, puis j'ai pensé à démarrer d'autres projets - ou j'ai pensé que je pourrais démarrer de nouveaux projets. Mais bientôt j'ai reçu une série de rapports de bugs et de demandes de nouveaux ajouts, et j'ai commencé à travailler dur pour lire ces 50 000 lignes de code afin de corriger les erreurs. Ce travail est très difficile.
L'ensemble du programme est comme un véritable château de cartes qui s'effondre presque tous les jours. Même le plus petit changement me prendrait des heures pour restaurer la stabilité du programme.
Peut-être ai-je découvert par hasard un principe important du génie logiciel : s'amuser pendant la phase de développement, puis passer à votre prochain travail une fois le projet déployé. Cependant, mes difficultés proviennent en réalité de mon ignorance du principe de base du développement de logiciels orientés objet (OO) - l'encapsulation. Mon programme est une vaste collection d'instructions switch qui appellent différentes fonctions dans différentes situations - cela conduit à un couplage étroit du code et rend difficile l'adaptation de l'ensemble du logiciel aux changements.
En JavaModèles de conceptionDans cet article, je discuterai du modèle de stratégie, qui peut être le modèle de conception le plus basique. Si j'avais connu le modèle stratégique en 1984, une grande partie de ce travail aurait pu être évitée.
Dans le premier chapitre du livre sur les modèles de conception de GOF, l'auteur discute de plusieurs principes de conception OO, qui incluent le cœur de nombreux modèles de conception. Le modèle de stratégie incarne deux principes : encapsuler les changements et programmer l'interface plutôt que de programmer la mise en œuvre. L'auteur de Design Pattern définit le Strategy Pattern comme suit :
Définir une famille d'algorithmes, encapsuler chacun d'eux et les rendre interchangeables. l'algorithme varie indépendamment des clients qui l'utilisent. (Le modèle de stratégie définit une série d'algorithmes, encapsule chaque algorithme et les rend interchangeables. Le modèle de stratégie permet à l'algorithme de varier indépendamment des clients qui l'utilisent.)
Le modèle Stratégie construit l'ensemble du logiciel comme un ensemble de pièces interchangeables faiblement couplées plutôt que comme un seul système étroitement couplé. Les logiciels faiblement couplés sont plus évolutifs, plus faciles à maintenir et plus réutilisables.
Pour comprendre le modèle de stratégie, nous examinons d'abord comment Swing utilise le modèle de stratégie pour dessiner des bordures autour des composants. Ensuite, nous discutons des avantages de l'utilisation du modèle de stratégie dans Swing et expliquons enfin comment implémenter le modèle de stratégie dans votre logiciel.
Presque tous les composants Swing peuvent dessiner des bordures, y compris des panneaux, des boutons, des listes, etc. Swing propose également une variété de types de bordures pour les composants : biseau (bordure biseautée), gravé (bordure en relief), ligne (bordure de ligne), titré (bordure de titre) et composé (bordure composée), etc. La bordure du composant Swing est dessinée à l'aide de la classe JComponent
, qui est la classe de base de tous les composants Swing et implémente les fonctions communes de tous les composants Swing.
JComponent
implémente paintBorder()
, qui est utilisé pour dessiner la bordure autour du composant. Supposons que le créateur de Swing utilise une méthode similaire à l'exemple 1 pour implémenter paintBorder()
:
// A hypothetical JComponent.paintBorder method protected void paintBorder(Graphics g) { switch(getBorderType()) { case LINE_BORDER: paintLineBorder(g); break; case ETCHED_BORDER: paintEtchedBorder(g); break; case TITLED_BORDER: paintTitledBorder(g); break; ... } }
Exemple 1 Mauvaise façon de dessiner les bordures Swing
Dans l'exemple 1, la méthode JComponent.paintBorder()
est en JComponent
Le dessin de la bordure est codé en dur.
Si vous souhaitez implémenter un nouveau type de bordure, vous pouvez imaginer le résultat - vous devez modifier au moins trois endroits de la classe JComponent
: Tout d'abord, ajoutez un nouveau lié à la nouvelle bordure tapez la valeur Entier . Deuxièmement, ajoutez une instruction case à l’instruction switch. Troisièmement, implémentez la méthode paintXXXBorder()
, XXX
représente le type de bordure.
Évidemment, prolonger le précédent paintBorder()
est ingrat. Vous constaterez que non seulement il est difficile d'étendre de nouveaux types, mais que la classe paintBorder()
n'est pas le premier endroit où vous la modifiez, elle fait partie de la boîte à outils Swing, ce qui signifie que vous devrez recompiler la classe et reconstruire le toute la boîte à outils. Vous devez également exiger que vos utilisateurs utilisent votre propre version de Swing au lieu de la version standard. Ce travail devra encore être effectué après la prochaine version de Swing. De plus, comme vous avez ajouté une nouvelle fonctionnalité de dessin de bordure à la classe JComponent
, que vous aimiez ou non la façon dont chaque composant Swing a accès à cette fonctionnalité, vous ne pouvez pas limiter vos nouvelles bordures à des types de composants spécifiques. JComponent
JComponent
utilise l'instruction switch dans l'exemple 1 pour implémenter sa fonctionnalité, le composant Swing ne peut pas être étendu.
那么运用OO思想如何实现呢?使用策略模式解耦JComponent
与边框绘制的代码,这样无需修改JComponent
类就实现了边框绘制算法的多样性。使用策略模式封装变化,即绘制边框方法的变化,以及对接口编程而不是对实现编程,提供一个Border
接口。接下来就看看JComponent
如何使用策略模式绘制边框。示例2为JComponent.paintBorder()
方法:
// The actual implementation of the JComponent.paintBorder() method protected void paintBorder(Graphics g) { Border border = getBorder(); if (border != null) { border.paintBorder(this, g, 0, 0, getWidth(), getHeight()); } }
示例2 绘制Swing边框的正确方式
前面的paintBorder()
方法绘制了有边框物体的边框。在这种情况下,边框对象封装了边框绘制算法,而不是JComponent
类。
注意JComponent
把自身的引用传递给Border.paintBorder()
,这样边框对象就可以从组件获取信息,这种方式通常称为委托。通过传递自身的引用,一个对象将功能委托给另一对象。
JComponent
类引用了边框对象,作为JComponent.getBorder()
方法的返回值,示例3为相关的setter方法。
... private Border border; ... public void setBorder(Border border) { Border oldBorder = this.border; this.border = border; firePropertyChange("border", oldBorder, border); if (border != oldBorder) { if (border == null || oldBorder == null || !(border.getBorderInsets(this). equals(oldBorder.getBorderInsets(this)))) { revalidate(); } repaint(); } } ... public Border getBorder() { return border; }
示例3 Swing组件边框的setter和getter方法
使用JComponent.setBorder()
设置组件的边框时,JComponent
类触发属性改变事件,如果新的边框与旧边框不同,组件重新绘制。getBorder()
方法简单返回Border
引用。
图1为边框和JComponent
类之间关系的类图。
图1 Swing边框
JComponent
类包含Border
对象的私有引用。注意由于Border
是接口不是类,Swing组件可以拥有任意类型的实现了Border
接口的边框(这就是对接口编程而不是对实现编程的含义)。
我们已经知道了JComponent
是如何通过策略模式实现边框绘制的,下面创建一种新边框类型来测试一下它的可扩展性。
图2 新边框类型
图2显示了具有三个面板的Swing应用。每个面板设置自定义的边框,每个边框对应一个HandleBorder
实例。绘图程序通常使用handleBorder对象来移动对象和改变对象大小。
示例4为HandleBorder
类:
import java.awt.*; import javax.swing.*; import javax.swing.border.*; public class HandleBorder extends AbstractBorder { protected Color lineColor; protected int thick; public HandleBorder() { this(Color.black, 6); } public HandleBorder(Color lineColor, int thick) { this.lineColor = lineColor; this.thick = thick; } public void paintBorder(Component component, Graphics g, int x, int y, int w, int h) { Graphics copy = g.create(); if(copy != null) { try { copy.translate(x,y); paintRectangle(component,copy,w,h); paintHandles(component,copy,w,h); } finally { copy.dispose(); } } } public Insets getBorderInsets() { return new Insets(thick,thick,thick,thick); } protected void paintRectangle(Component c, Graphics g, int w, int h) { g.setColor(lineColor); g.drawRect(thick/2,thick/2,w-thick-1,h-thick-1); } protected void paintHandles(Component c, Graphics g, int w, int h) { g.setColor(lineColor); g.fillRect(0,0,thick,thick); // upper left g.fillRect(w-thick,0,thick,thick); // upper right g.fillRect(0,h-thick,thick,thick); // lower left g.fillRect(w-thick,h-thick,thick,thick); // lower right g.fillRect(w/2-thick/2,0,thick,thick); // mid top g.fillRect(0,h/2-thick/2,thick,thick); // mid left g.fillRect(w/2-thick/2,h-thick,thick,thick); // mid bottom g.fillRect(w-thick,h/2-thick/2,thick,thick); // mid right } }
示例4 HandleBorder类
HandleBorder
类继承自javax.swing.border.AbstractBorder
,覆盖paintBorder()
和getBorderInsets()
方法。尽管HandleBorder
的实现不太重要,但是我们可以容易地创建新边框类型,因为Swing使用了策略模式绘制组件边框。
示例5为Swing应用。
import javax.swing.*; import javax.swing.border.*; import java.awt.*; import java.awt.event.*; public class Test extends JFrame { public static void main(String[] args) { JFrame frame = new Test(); frame.setBounds(100, 100, 500, 200); frame.setDefaultCloseOperation(JFrame.DISPOSE_ON_CLOSE); frame.show(); } public Test() { super("Creating a New Border Type"); Container contentPane = getContentPane(); JPanel[] panels = { new JPanel(), new JPanel(), new JPanel() }; Border[] borders = { new HandleBorder(), new HandleBorder(Color.red, 8), new HandleBorder(Color.blue, 10) }; contentPane.setLayout( new FlowLayout(FlowLayout.CENTER,20,20)); for(int i=0; i < panels.length; ++i) { panels[i].setPreferredSize(new Dimension(100,100)); panels[i].setBorder(borders[i]); contentPane.add(panels[i]); } } }
示例5 使用handleBorder
前面的应用创建了三个面板(javax.swing.JPanel
实例)和三个边框(HandleBorder
实例)。注意通过调用JComponent.setBorder()
可以为面板简单设置具体的边框。
回想一下示例2,当JComponent
调用Border.paintBorder()
时,组件引用传递给组件的边框——一种委托方式。正如我前面提到的,开发人员经常将策略模式与委托共同使用。该HandleBorder
类未使用组件引用,但是其他边框会用到引用从组件获取信息。比如示例6为这种类型边框javax.swing.border.EtchedBorder
的paintBorder()
方法:
// The following listing is from // javax.swing.border.EtchedBorder public void paintBorder(Component component, Graphics g, int x, int y, int width, int height) { int w = width; int h = height; g.translate(x, y); g.setColor(etchType == LOWERED? getShadowColor(component) : getHighlightColor(component)); g.drawRect(0, 0, w-2, h-2); g.setColor(etchType == LOWERED? getHighlightColor(component) : getShadowColor(component)); g.drawLine(1, h-3, 1, 1); g.drawLine(1, 1, w-3, 1); g.drawLine(0, h-1, w-1, h-1); g.drawLine(w-1, h-1, w-1, 0); g.translate(-x, -y); }
示例6 从组件获取信息的Swing边框
javax.swing.border.EtchedBorder.paintBorder()
方法使用它的组件引用获取组件的阴影和高亮颜色信息。
策略模式相对比较简单,在软件中容易实现:
为你的策略对象定义Strategy
接口
编写ConcreteStrategy
类实现Strategy
接口
在你的Context
类中,保持对“`Strategy“对象的私有引用。
在你的Context
类中,实现Strategy
对象的settter和getter方法。
Strategy
接口定义了Strategy
对象的行为;比如Swing边框的Strategy
接口为javax.swing.Border
接口。
具体的ConcreteStrategy
类实现了Strategy
接口;比如,Swing边框的LineBorder
和EtchedBorder
类为ConcreteStrategy
类。Context
类使用Strategy
对象;比如JComponent
类为Context
对象。
你也可以检查一下你现有的类,看看它们是否是紧耦合的,这时可以考虑使用策略对象。通常情况下,这些包括switch语句的需要改进的地方与我在文章开头讨论的非常相似。
一些Swing组件的渲染和编辑条件比其他的更加复杂。讨论如何在列表类(javax.swing.JList
)使用策略模式渲染列表项。
上一次的作业要求重新实现TableBubbleSortDecorator
。在“装饰你的代码”一文首先讨论了JDK内建的对代理模式的支持。
简单来说,我创建了抽象类Decorator
实现java.lang.reflect.InvocationHandler
接口。Decorator
类引用了装饰对象(或者说代理模式中的真实对象)。示例1H为Decorator
类。
import java.lang.reflect.InvocationHandler; public abstract class Decorator implements InvocationHandler { // The InvocationHandler interface defines one method: // invoke(Object proxy, Method method, Object[] args). That // method must be implemented by concrete (meaning not // abstract) extensions of this class. private Object decorated; protected Decorator(Object decorated) { this.decorated = decorated; } protected synchronized Object getDecorated() { return decorated; } protected synchronized void setDecorated(Object decorated) { this.decorated = decorated; } }
示例1H 抽象装饰器类
尽管Decorator
类实现了InvocationHandler
接口,但是它没有实现该接口的唯一方法invoke(Object proxy, Method method, Object[] methodArguments)
。因为Decorator
类是抽象的,Decorator
的扩展是具体类的话必须实现invoke()
方法。
Decorator
类是所有装饰器的基类。示例2H为Decorator
类的扩展,具体的表排序装饰器。注意TableSortDecorator
没有实现invoke()
方法,它是抽象的。
import javax.swing.table.TableModel; import javax.swing.event.TableModelListener; public abstract class TableSortDecorator extends Decorator implements TableModelListener { // Concrete extensions of this class must implement // tableChanged from TableModelListener abstract public void sort(int column); public TableSortDecorator(TableModel realModel) { super(realModel); } }
示例2H 修正的TableSortDecorator
现在可以使用JDK内建的对代理模式的支持实现TableBubbleSortDecorator
:
import java.lang.reflect.Method; import javax.swing.table.TableModel; import javax.swing.event.TableModelEvent; public class TableBubbleSortDecorator extends TableSortDecorator { private int indexes[]; private static String GET_VALUE_AT = "getValueAt"; private static String SET_VALUE_AT = "setValueAt"; public TableBubbleSortDecorator(TableModel model) { super(model); allocate(); } // tableChanged is defined in TableModelListener, which // is implemented by TableSortDecorator. public void tableChanged(TableModelEvent e) { allocate(); } // invoke() is defined by the java.lang.reflect.InvocationHandler // interface; that interface is implemented by the // (abstract) Decorator class. Decorator is the superclass // of TableSortDecorator. public Object invoke(Object proxy, Method method, Object[] args) { Object result = null; TableModel model = (TableModel)getDecorated(); if(GET_VALUE_AT.equals(method.getName())) { Integer row = (Integer)args[0], col = (Integer)args[1]; result = model.getValueAt(indexes[row.intValue()], col.intValue()); } else if(SET_VALUE_AT.equals(method.getName())) { Integer row = (Integer)args[1], col = (Integer)args[2]; model.setValueAt(args[0], indexes[row.intValue()], col.intValue()); } else { try { result = method.invoke(model, args); } catch(Exception ex) { ex.printStackTrace(System.err); } } return result; } // The following methods perform the bubble sort ... public void sort(int column) { TableModel model = (TableModel)getDecorated(); int rowCount = model.getRowCount(); for(int i=0; i < rowCount; i++) { for(int j = i+1; j < rowCount; j++) { if(compare(indexes[i], indexes[j], column) < 0) { swap(i,j); } } } } private void swap(int i, int j) { int tmp = indexes[i]; indexes[i] = indexes[j]; indexes[j] = tmp; } private int compare(int i, int j, int column) { TableModel realModel = (TableModel)getDecorated(); Object io = realModel.getValueAt(i,column); Object jo = realModel.getValueAt(j,column); int c = jo.toString().compareTo(io.toString()); return (c < 0) ? -1 : ((c > 0) ? 1 : 0); } private void allocate() { indexes = new int[((TableModel)getDecorated()). getRowCount()]; for(int i=0; i < indexes.length; ++i) { indexes[i] = i; } } }
示例3H 修正的TableBubbleSortDecorator
使用JDK内建的对代理模式的支持和设计良好的基类,通过继承Decorator
及实现invoke()
方法很容易实现装饰器。
给我的一封邮件里这样写到:
根据我在树上选择的节点工具栏要显示特定的按钮。我创建了工具栏装饰器,它的构造函数参数为JToolBar
工具栏。装饰器包含一个showButtonForNode()
方法根据节点改变按钮。我调用在树的选择监听器的valueChanged()
方法中调用showButtonForNode()
方法。
这样使用装饰器模式正确吗?
很多设计模式可以达到功能扩展的目的;比如在Java设计模式中,你已经知道如何使用代理模式,装饰器模式和策略模式来扩展功能。由于他们都可以实现相同的目标(功能扩展),在具体情况下使用哪个模式就很难判断。
装饰器模式的主要解决问题的点在于:在运行时结合多种行为;比如理解代理设计模式一文的“上一次得作业”部分,我展示了Swing表格排序和过滤相结合的方法。
TableSortDecorator sortDecorator = new TableBubbleSortDecorator(table.getModel()); TableFilterDecorator filterDecorator = new TableHighPriceFilter(sortDecorator); table.setModel(filterDecorator);
前面的代码中,过滤装饰器装饰了排序装饰器,排序装饰器装饰了表格模型;结果表格模型可以排序和过滤数据。
对于邮件中的问题,使用工具栏按钮与其他行为组合不太合适,所以装饰器模式可能不合适。这种情况代理模式看来更好,在编译阶段而不是运行时就可以获取代理和真实对象的关系,从而扩展功能。
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!