recherche
Maisondéveloppement back-endTutoriel PythonIntroduction détaillée à la fonction iter intégrée de Python

英文文档:

iter(object[, sentinel])

Return un objet itérateur. Le premier argument est interprété très différemment selon la présence du deuxième argument. Sans deuxième argument, l'objet doit être un objet de collection qui prend en charge le protocole d'itération (la méthode iter()), ou il doit prendre en charge le protocole de séquence (la méthode getitem() avec des arguments integer commençant à 0). . S'il ne prend en charge aucun de ces protocoles, TypeError est déclenché. Si le deuxième argument, sentinel, est donné, alors l'objet doit être un objet appelable. L'itérateur créé dans ce cas appellera l'objet sans argument for each appel à sa méthode next() ; si la valeur renvoyée est égale à sentinel, StopIteration sera déclenché, sinon la valeur sera renvoyée.

Une application utile de la deuxième forme de iter() consiste à lire les lignes d'un fichier jusqu'à ce qu'une certaine ligne soit atteinte. L'exemple suivant lit un fichier jusqu'à ce que la méthode readline() renvoie une string vide :

with open('mydata.txt') as fp:
    for line in iter(fp.readline, ''):
        process_line(line)

说明:

  1. 函数功能返回一个可迭代对象

  2.数必须是一个支持可迭代协议(即实现了iter()方法)的集合(字典、集合、不可变集合),或者支持序列协议(即实现了getitem()方法,方法接收一个从0开始的整数参数)的序列(元组、列表、字符串),否则将报错。

>>> a = iter({'A':1,'B':2}) #字典集合
>>> a
<dict_keyiterator>
>>> next(a)
'A'
>>> next(a)
'B'
>>> next(a)
Traceback (most recent call last):
  File "<pyshell>", line 1, in <module>
    next(a)
StopIteration
 
>>> a = iter('abcd') #字符串序列
>>> a
<str_iterator>
>>> next(a)
'a'
>>> next(a)
'b'
>>> next(a)
'c'
>>> next(a)
'd'
>>> next(a)
Traceback (most recent call last):
  File "<pyshell>", line 1, in <module>
    next(a)
StopIteration</module></pyshell></str_iterator></module></pyshell></dict_keyiterator>

  3.被调用对象。创建的迭代对象,在调用next法的时候会调用这个可被调用对象,当返回值和sentinel值相等时,将抛出StopIteration异常, 。

# 定义类
>>> class IterTest: 
    def __init__(self):
        self.start = 0
        self.end = 10
    def get_next_value(self):
        current = self.start
        if current >> iterTest = IterTest() #实例化类
>>> a = iter(iterTest.get_next_value,4) # iterTest.get_next_value为可调用对象,sentinel值为4
>>> a
<callable_iterator>
>>> next(a)
>>> next(a)
>>> next(a)
>>> next(a)
>>> next(a) #迭代到4终止
Traceback (most recent call last):
  File "<pyshell>", line 1, in <module>
    next(a)
StopIteration</module></pyshell></callable_iterator>

 

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Python vs C: courbes d'apprentissage et facilité d'utilisationPython vs C: courbes d'apprentissage et facilité d'utilisationApr 19, 2025 am 12:20 AM

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Python vs C: gestion et contrôle de la mémoirePython vs C: gestion et contrôle de la mémoireApr 19, 2025 am 12:17 AM

Python et C ont des différences significatives dans la gestion et le contrôle de la mémoire. 1. Python utilise la gestion automatique de la mémoire, basée sur le comptage des références et la collecte des ordures, simplifiant le travail des programmeurs. 2.C nécessite une gestion manuelle de la mémoire, en fournissant plus de contrôle mais en augmentant la complexité et le risque d'erreur. Quelle langue choisir doit être basée sur les exigences du projet et la pile de technologie d'équipe.

Python pour l'informatique scientifique: un look détailléPython pour l'informatique scientifique: un look détailléApr 19, 2025 am 12:15 AM

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Python et C: trouver le bon outilPython et C: trouver le bon outilApr 19, 2025 am 12:04 AM

Que ce soit pour choisir Python ou C dépend des exigences du projet: 1) Python convient au développement rapide, à la science des données et aux scripts en raison de sa syntaxe concise et de ses bibliothèques riches; 2) C convient aux scénarios qui nécessitent des performances élevées et un contrôle sous-jacent, tels que la programmation système et le développement de jeux, en raison de sa compilation et de sa gestion de la mémoire manuelle.

Python pour la science des données et l'apprentissage automatiquePython pour la science des données et l'apprentissage automatiqueApr 19, 2025 am 12:02 AM

Python est largement utilisé dans la science des données et l'apprentissage automatique, s'appuyant principalement sur sa simplicité et son puissant écosystème de bibliothèque. 1) Pandas est utilisé pour le traitement et l'analyse des données, 2) Numpy fournit des calculs numériques efficaces, et 3) Scikit-Learn est utilisé pour la construction et l'optimisation du modèle d'apprentissage automatique, ces bibliothèques font de Python un outil idéal pour la science des données et l'apprentissage automatique.

Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante?Apprendre Python: 2 heures d'étude quotidienne est-elle suffisante?Apr 18, 2025 am 12:22 AM

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Python pour le développement Web: applications clésPython pour le développement Web: applications clésApr 18, 2025 am 12:20 AM

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

Python vs. C: Explorer les performances et l'efficacitéPython vs. C: Explorer les performances et l'efficacitéApr 18, 2025 am 12:20 AM

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Outils chauds

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

Listes Sec

Listes Sec

SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

PhpStorm version Mac

PhpStorm version Mac

Le dernier (2018.2.1) outil de développement intégré PHP professionnel

Télécharger la version Mac de l'éditeur Atom

Télécharger la version Mac de l'éditeur Atom

L'éditeur open source le plus populaire

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Puissant environnement de développement intégré PHP