Maison > Article > interface Web > Explication détaillée de la structure de la mémoire des objets JavaScript V8 et de l'accès aux attributs
Dans les années 1990, avec la sortie du navigateur Netscape, JavaScript est apparu pour la première fois aux yeux des gens. Plus tard, avec l'avènement de l'application à grande échelle d'AJAX et l'ère des applications client riches et monopages, JavaScript a occupé une place de plus en plus importante dans le développement Web. Dans les premiers moteurs JavaScript, les performances devenaient de plus en plus un goulot d'étranglement dans le développement d'applications Web. L'objectif de conception du moteur V8 est d'assurer l'efficacité d'exécution des applications JavaScript à grande échelle. Dans de nombreux tests, il apparaît clairement que les performances du V8 sont meilleures que celles de JScript (Internet Explorer), SpiderMonkey (Firefox) et JavaScriptCore. (Safari). Selon la documentation officielle de l'introduction de la V8, il se concentre principalement sur l'optimisation des performances sous trois aspects : l'accès aux attributs, la génération dynamique de code machine et le garbage collection efficace. L'objet est sans aucun doute l'un des types de données les plus importants en JavaScript. Dans cet article, nous expliquons en détail sa structure interne. Le diagramme d'héritage est le suivant :
La structure de l'objet JavaScript nouvellement alloué dans la V8 est la suivante :
[ class / map ] -> ... ; 指向内部类 [ properties ] -> [empty array] [ elements ] -> [empty array] ; 数值类型名称的属性 [ reserved #1 ] -\ [ reserved #2 ] | [ reserved #3 ] }- in object properties,即预分配的内存空间 ............... | [ reserved #N ] -/
En créant un nouvel objet, la V8 créer une zone de mémoire pré-alloué pour stocker les propriétés dites dans l'objet. La taille de la zone pré-alloué est déterminée par le nombre de paramètres dans le constructeur (this.field = expr
). Lorsque vous envisagez d'ajouter un nouvel attribut à un objet, V8 essaiera d'abord de le placer dans ce que l'on appelle l'emplacement dans l'ordre. Lorsque l'emplacement dans l'objet est surchargé, V8 essaiera d'ajouter le nouvel attribut à l'emplacement extérieur. liste des propriétés de l'objet. La relation de mappage entre les noms d'attribut et les indices d'attribut est stockée dans ce que l'on appelle des classes cachées. Par exemple, la méthode de stockage des objets { a: 1, b: 2, c: 3, d: 4}
peut être la suivante :
[ class ] -> [a: in obj #1, b: in obj #2, c: out obj #1, d: out obj #2] [ properties ] -> [ 3 ][ 4 ] ; this is linear array [ elements ] [ 1 ] [ 2 ]
À mesure que le nombre d'attributs augmente, La V8 reviendra au mode Dictionnaire traditionnel/mode table de hachage :
[ class ] -> [ OBJECT IS IN DICTIONARY MODE ] [ properties ] -> [a: 1, b: 2, c: 3, d: 4, e: 5] ; this is classical hash table [ elements ]
Éléments de conception V8
Une visite guidée de V8 : représentation d'objet
Démystifier la v8 et les performances JavaScript
V8 Docs : référence de classe d'objet
Comment V8 gère-t-il la mémoire des instances d'objets ?
En tant que langage dynamique, JavaScript nous permet de définir des objets dans d'une manière très flexible, telle que :
obj.prop obj["prop"]
En référence à la description dans la spécification de définition JavaScript, le nom de l'attribut est toujours une chaîne Même si vous utilisez un nom autre qu'une chaîne, il sera implicitement converti. à un type de chaîne. Par exemple, si vous créez un tableau et y accédez avec un indice numérique, V8 le convertit toujours en chaîne puis l'indexe, donc la méthode suivante obtiendra le même effet :
obj[1]; // obj["1"]; // names for the same property obj[1.0]; // var o = { toString: function () { return "-1.5"; } }; obj[-1.5]; // also equivalent obj[o]; // since o is converted to string
Et en JavaScript Le tableau est juste un objet qui contient des length
attributs supplémentaires. length
renverra le résultat de l'indice maximum actuel plus un (à ce moment, l'indice de chaîne sera converti en un type numérique pour le calcul) :
var a = new Array(); a[100] = "foo"; a.length; //101 a[undefined] = 'a'; a.length; //0
Function
est essentiellement un objet, sauf que l'attribut length
renverra la longueur du paramètre :
> a = ()=>{} [Function: a] > a.length 0 > a = (b)=>{} [Function: a] > a.length 1
En tant que langage typé dynamiquement, les propriétés d'objet en JavaScript peuvent être ajoutées et supprimées dynamiquement au moment de l'exécution, ce qui signifie que la structure de l'objet entier changera fréquemment. La plupart des moteurs JavaScript ont tendance à utiliser des structures de données de type dictionnaire pour stocker les propriétés des objets. Chaque fois qu'une propriété est accédée, le moteur doit localiser dynamiquement l'adresse d'indice correspondant à la propriété dans la couche interne, puis lire la valeur. Cette méthode est plus facile à mettre en œuvre, mais entraînera de mauvaises performances. Dans d'autres langages statiques comme Java et Smalltalk, les variables membres ont leurs adresses de décalage fixes en mémoire déterminées lors de la phase de compilation, et une seule instruction est nécessaire pour les charger depuis la mémoire lors de l'accès aux attributs. V8 utilise la méthode de création dynamique de classes internes cachées pour enregistrer dynamiquement l'adresse mémoire de l'attribut dans l'objet, améliorant ainsi la vitesse globale d'accès aux attributs. Pour résumer, chaque fois qu'une nouvelle propriété est ajoutée à un objet, V8 corrige automatiquement sa classe interne cachée. Expérimentons d'abord l'existence de classes cachées à travers une expérience :
var PROPERTIES = 10000000; var o = {}; var start = +new Date; for (var i = 0; i < PROPERTIES; i++) { o[i] = i; } console.log(+new Date - start); function O(size) { for (var i = 0; i < size; i++) { this[i] = null; } } var o = new O(PROPERTIES); var start = +new Date; for (var i = 0; i < PROPERTIES; i++) { o[i] = i; } console.log(+new Date - start); class OClass { constructor(size){ for (var i = 0; i < size; i++) { this[i] = null; } } } var o = new OClass(PROPERTIES); var start = +new Date; for (var i = 0; i < PROPERTIES; i++) { o[i] = i; } console.log(+new Date - start);
Les résultats d'exécution de ce programme sont les suivants :
// Babel 下结果 385 37 49 // Chrome 下结果 416 32 31
Dans la première implémentation, à chaque fois il s'agit d'un objecto
Lors de la définition d'un nouvel attribut, V8 créera une nouvelle classe interne cachée (appelée en interne Map) pour stocker la nouvelle adresse mémoire afin d'optimiser la vitesse de recherche d'attribut. Dans la deuxième implémentation, nous initialisons la classe interne lors de la création d'un nouvel objet, afin que V8 puisse localiser ces propriétés avec de hautes performances lors de l'attribution des propriétés. La troisième implémentation utilise la classe ES6, qui offre les meilleures performances sous V8 pur. Ensuite, expliquons comment fonctionnent les classes cachées. Supposons que nous définissions une fonction qui décrit le point :
function Point(x, y) { this.x = x; this.y = y; }
Lorsque nous exécutons l'instruction new Point(x,y)
, V8 créera un nouvel objet Point
. Pendant le processus de création, V8 créera d'abord une classe interne cachée appelée C0
. Comme aucun attribut n'a été ajouté à l'objet, la classe cachée est encore vide à ce moment :
接下来调用首个赋值语句this.x = x;
为当前Point
对象创建了新的属性x
,此时 V8 会基于C0
创建另一个隐藏类C1
来替换C0
,然后在C1
中存放对象属性x
的内存位置信息:
这里从C0
到C1
的变化称为转换(Transitions),当我们为同一个类型的对象添加新的属性时,并不是每次都会创建新的隐藏类,而是多个对象会共用某个符合转换条件的隐藏类。接下来继续执行this.y = y
这一条语句,会为Point
对象创建新的属性。此时 V8 会进行以下步骤:
基于C1
创建另一个隐藏类C1
,并且将关于属性y
的位置信息写入到C2
中。
更新C1
为其添加转换信息,即当为Point
对象添加属性 y
时,应该转换到隐藏类 C2
。
整个过程的伪代码描述如下:
<Point object is allocated> Class C0 "x": TRANSITION to C1 at offset 0 this.x = x; Class C1 "x": FIELD at offset 0 "y": TRANSITION to C2 at offset 1 this.y = y; Map C2 "x": FIELD at offset 0 "y": FIELD at offset 1
我们在上文中提及,如果每次添加新的属性时都创建新的隐藏类无疑是极大的性能浪费,实际上当我们再次创建新的Point
对象时,V8 并不会创建新的隐藏类而是使用已有的,过程描述如下:
初始化新的Point
对象,并将隐藏类指向C0
。
添加x
属性时,遵循隐藏类的转换原则指向到C1
, 并且根据C1
指定的偏移地址写入x
。
添加y
属性时,遵循隐藏类的转换原则指向到C2
,并且根据C2
指定的偏移地址写入y
。
另外我们在上文以链表的方式描述转换,实际上真实场景中 V8 会以树的结构来描述转换及其之间的关系,这样就能够用于类似于下面的属性一致而赋值顺序颠倒的场景:
function Point(x, y, reverse) { if (reverse) { this.x = x; this.y = y; } else { this.y = x; this.x = y; } }
JavaScript 中并没有类的概念(语法糖除外),因此对于方法的调用处理会难于 C++ 或者 Java。下面这个例子中,distance
方法可以被看做Point
的普通属性之一,不过其并非原始类型的数据,而是指向了另一个函数:
function Point(x, y) { this.x = x; this.y = y; this.distance = PointDistance; } function PointDistance(p) { var dx = this.x - p.x; var dy = this.y - p.y; return Math.sqrt(dx*dx + dy*dy); }
如果我们像上文介绍的普通的 in-object 域一样来处理distance
属性,那么无疑会带来较大的内存浪费,毕竟每个对象都要存放一段外部函数引用(Reference 的内存占用往往大于原始类型)。C++ 中则是以指向多个虚函数的虚函数表(V-Tables)解决这个问题。每个包含虚函数的类的实例都会指向这个虚函数表,当调用某个虚函数时,程序会自动从虚函数表中加载该函数的地址信息然后转向到该地址调用。V8 中我们已经使用了隐藏类这一共享数据结构,因此可以很方便地改造下就可以。我们引入了所谓 Constant Functions 的概念,某个 Constant Function 即代表了对象中仅包含某个名字,而具体的属性值存放在描述符本身的概念:
<Point object is allocated> Class C0 "x": TRANSITION to C1 at offset 0 this.x = x; Class C1 "x": FIELD at offset 0 "y": TRANSITION to C2 at offset 1 this.y = y; Class C2 "x": FIELD at offset 0 "y": FIELD at offset 1 "distance": TRANSITION to C3 <PointDistance> this.distance = PointDistance; Class C3 "x": FIELD at offset 0 "y": FIELD at offset 1 "distance": CONSTANT_FUNCTION <PointDistance>
注意,在这里如果我们将PointDistance
重定义指向了其他函数,那么这个转换也会自动失效,V8 会创建新的隐藏类。另一种解决这个问题的方法就是使用原型,每个构造函数都会有所谓的Prototype
属性,该属性会自动成为对象的原型链上的一环,上面的例子可以改写为以下方式:
function Point(x, y) { this.x = x; this.y = y; } Point.prototype.distance = function(p) { var dx = this.x - p.x; var dy = this.y - p.y; return Math.sqrt(dx*dx + dy*dy); } ... var u = new Point(1, 2); var v = new Point(3, 4); var d = u.distance(v);
V8 同样会把原型链上的方法在隐藏类中映射为 Constant Function 描述符,而调用原型方法往往会比调用自身方法慢一点,毕竟引擎不仅要去扫描自身的隐藏类,还要去扫描原型链上对象的隐藏类才能得知真正的函数调用地址。不过这个不会对于代码的性能造成明显的影响,因此写代码的时候也不必小心翼翼的避免这个。
对于复杂属性的对象,V8 会使用所谓的字典模式(Dictionary Mode)来存储对象,也就是使用哈希表来存放键值信息,这种方式存储开销会小于上文提到的包含了隐藏类的方式,不过查询速度会远小于前者。初始状态下,哈希表中的所有的键与值都被设置为了undefined
,当插入新的数据时,计算得出的键名的哈希值的低位会被当做初始的存储索引地址。如果此地址已经被占用了,V8 会尝试向下一个地址进行插入,直到插入成功,伪代码表述如下:
// 插入 insert(table, key, value): table = ensureCapacity(table, length(table) + 1) code = hash(key) n = capacity(table) index = code (mod n) while getKey(table, index) is not undefined: index += 1 (mod n) set(table, index, key, value) //查找 lookup(table, key): code = hash(key) n = capacity(table) index = code (mod n) k = getKey(table, index) while k is not null or undefined and k != key: index += 1 (mod n) k = getKey(table, index) if k == key: return getValue(table, index) else: return undefined
尽管计算键名哈希值与比较的速度会比较快,但是每次读写属性的时候都进行这么多步骤无疑会大大拉低速度,因此 V8 尽可能地会避免使用这种存储方式。
V8 中将属性名为非负整数(0、1、2……)的属性称为Element,每个对象都有一个指向Element数组的指针,其存放和其他属性是分开的。注意,隐藏类中并不包含 Element 的描述符,但可能包含其它有着不同 Element 类型的同一种隐藏类的转换描述符。大多数情况下,对象都会有 Fast Element,也就是说这些 Element 以连续数组的形式存放。有三种不同的 Fast Element:
Fast small integers
Fast doubles
Fast values
根据标准,JavaScript 中的所有数字都理应以64位浮点数形式出现。因此 V8 尽可能以31位带符号整数来表达数字(最低位总是0,这有助于垃圾回收器区分数字和指针)。因此含有Fast small integers类型的对象,其 Element 类型只会包含这样的数字。如果需要存储小数、大整数或其他特殊值,如-0,则需要将数组提升为 Fast doubles。于是这引入了潜在的昂贵的复制-转换操作,但通常不会频繁发生。Fast doubles 仍然是很快的,因为所有的数字都是无封箱存储的。但如果我们要存储的是其他类型,比如字符串或者对象,则必须将其提升为普通的 Fast Element 数组。
JavaScript 不提供任何确定存储元素多少的办法。你可能会说像这样的办法,new Array(100)
,但实际上这仅仅针对Array
构造函数有用。如果你将值存在一个不存在的下标上,V8会重新开辟更大的内存,将原有元素复制到新内存。V8 可以处理带空洞的数组,也就是只有某些下标是存有元素,而期间的下标都是空的。其内部会安插特殊的哨兵值,因此试图访问未赋值的下标,会得到undefined
。当然,Fast Element 也有其限制。如果你在远远超过当前数组大小的下标赋值,V8 会将数组转换为字典模式,将值以哈希表的形式存储。这对于稀疏数组来说很有用,但性能上肯定打了折扣,无论是从转换这一过程来说,还是从之后的访问来说。如果你需要复制整个数组,不要逆向复制(索引从高到低),因为这几乎必然触发字典模式。
// 这会大大降低大数组的性能 function copy(a) { var b = new Array(); for (var i = a.length - 1; i >= 0; i--) b[i] = a[i]; return b; }
由于普通的属性和数字式属性分开存放,即使数组退化为字典模式,也不会影响到其他属性的访问速度(反之亦然)。
// http://www.php.cn/ class V8_EXPORT Object : public Value { public: V8_DEPRECATE_SOON("Use maybe version", bool Set(Local<Value> key, Local<Value> value)); V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, Local<Value> key, Local<Value> value); V8_DEPRECATE_SOON("Use maybe version", bool Set(uint32_t index, Local<Value> value)); V8_WARN_UNUSED_RESULT Maybe<bool> Set(Local<Context> context, uint32_t index, Local<Value> value); // Implements CreateDataProperty (ECMA-262, 7.3.4). // // Defines a configurable, writable, enumerable property with the given value // on the object unless the property already exists and is not configurable // or the object is not extensible. // // Returns true on success. V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context, Local<Name> key, Local<Value> value); V8_WARN_UNUSED_RESULT Maybe<bool> CreateDataProperty(Local<Context> context, uint32_t index, Local<Value> value); // Implements DefineOwnProperty. // // In general, CreateDataProperty will be faster, however, does not allow // for specifying attributes. // // Returns true on success. V8_WARN_UNUSED_RESULT Maybe<bool> DefineOwnProperty( Local<Context> context, Local<Name> key, Local<Value> value, PropertyAttribute attributes = None); // Sets an own property on this object bypassing interceptors and // overriding accessors or read-only properties. // // Note that if the object has an interceptor the property will be set // locally, but since the interceptor takes precedence the local property // will only be returned if the interceptor doesn't return a value. // // Note also that this only works for named properties. V8_DEPRECATED("Use CreateDataProperty / DefineOwnProperty", bool ForceSet(Local<Value> key, Local<Value> value, PropertyAttribute attribs = None)); V8_DEPRECATE_SOON("Use CreateDataProperty / DefineOwnProperty", Maybe<bool> ForceSet(Local<Context> context, Local<Value> key, Local<Value> value, PropertyAttribute attribs = None)); V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(Local<Value> key)); V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context, Local<Value> key); V8_DEPRECATE_SOON("Use maybe version", Local<Value> Get(uint32_t index)); V8_WARN_UNUSED_RESULT MaybeLocal<Value> Get(Local<Context> context, uint32_t index); V8_DEPRECATED("Use maybe version", PropertyAttribute GetPropertyAttributes(Local<Value> key)); V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetPropertyAttributes( Local<Context> context, Local<Value> key); V8_DEPRECATED("Use maybe version", Local<Value> GetOwnPropertyDescriptor(Local<String> key)); V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetOwnPropertyDescriptor( Local<Context> context, Local<String> key); V8_DEPRECATE_SOON("Use maybe version", bool Has(Local<Value> key)); V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, Local<Value> key); V8_DEPRECATE_SOON("Use maybe version", bool Delete(Local<Value> key)); // TODO(dcarney): mark V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context, Local<Value> key); V8_DEPRECATED("Use maybe version", bool Has(uint32_t index)); V8_WARN_UNUSED_RESULT Maybe<bool> Has(Local<Context> context, uint32_t index); V8_DEPRECATED("Use maybe version", bool Delete(uint32_t index)); // TODO(dcarney): mark V8_WARN_UNUSED_RESULT Maybe<bool> Delete(Local<Context> context, uint32_t index); V8_DEPRECATED("Use maybe version", bool SetAccessor(Local<String> name, AccessorGetterCallback getter, AccessorSetterCallback setter = 0, Local<Value> data = Local<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None)); V8_DEPRECATED("Use maybe version", bool SetAccessor(Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = 0, Local<Value> data = Local<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None)); // TODO(dcarney): mark V8_WARN_UNUSED_RESULT Maybe<bool> SetAccessor(Local<Context> context, Local<Name> name, AccessorNameGetterCallback getter, AccessorNameSetterCallback setter = 0, MaybeLocal<Value> data = MaybeLocal<Value>(), AccessControl settings = DEFAULT, PropertyAttribute attribute = None); void SetAccessorProperty(Local<Name> name, Local<Function> getter, Local<Function> setter = Local<Function>(), PropertyAttribute attribute = None, AccessControl settings = DEFAULT); Maybe<bool> HasPrivate(Local<Context> context, Local<Private> key); Maybe<bool> SetPrivate(Local<Context> context, Local<Private> key, Local<Value> value); Maybe<bool> DeletePrivate(Local<Context> context, Local<Private> key); MaybeLocal<Value> GetPrivate(Local<Context> context, Local<Private> key); V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetPropertyNames()); V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames( Local<Context> context); V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetPropertyNames( Local<Context> context, KeyCollectionMode mode, PropertyFilter property_filter, IndexFilter index_filter); V8_DEPRECATE_SOON("Use maybe version", Local<Array> GetOwnPropertyNames()); V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames( Local<Context> context); V8_WARN_UNUSED_RESULT MaybeLocal<Array> GetOwnPropertyNames( Local<Context> context, PropertyFilter filter); Local<Value> GetPrototype(); V8_DEPRECATED("Use maybe version", bool SetPrototype(Local<Value> prototype)); V8_WARN_UNUSED_RESULT Maybe<bool> SetPrototype(Local<Context> context, Local<Value> prototype); Local<Object> FindInstanceInPrototypeChain(Local<FunctionTemplate> tmpl); V8_DEPRECATED("Use maybe version", Local<String> ObjectProtoToString()); V8_WARN_UNUSED_RESULT MaybeLocal<String> ObjectProtoToString( Local<Context> context); Local<String> GetConstructorName(); Maybe<bool> SetIntegrityLevel(Local<Context> context, IntegrityLevel level); int InternalFieldCount(); V8_INLINE static int InternalFieldCount( const PersistentBase<Object>& object) { return object.val_->InternalFieldCount(); } V8_INLINE Local<Value> GetInternalField(int index); void SetInternalField(int index, Local<Value> value); V8_INLINE void* GetAlignedPointerFromInternalField(int index); V8_INLINE static void* GetAlignedPointerFromInternalField( const PersistentBase<Object>& object, int index) { return object.val_->GetAlignedPointerFromInternalField(index); } void SetAlignedPointerInInternalField(int index, void* value); void SetAlignedPointerInInternalFields(int argc, int indices[], void* values[]); // Testers for local properties. V8_DEPRECATED("Use maybe version", bool HasOwnProperty(Local<String> key)); V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context, Local<Name> key); V8_WARN_UNUSED_RESULT Maybe<bool> HasOwnProperty(Local<Context> context, uint32_t index); V8_DEPRECATE_SOON("Use maybe version", bool HasRealNamedProperty(Local<String> key)); V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedProperty(Local<Context> context, Local<Name> key); V8_DEPRECATE_SOON("Use maybe version", bool HasRealIndexedProperty(uint32_t index)); V8_WARN_UNUSED_RESULT Maybe<bool> HasRealIndexedProperty( Local<Context> context, uint32_t index); V8_DEPRECATE_SOON("Use maybe version", bool HasRealNamedCallbackProperty(Local<String> key)); V8_WARN_UNUSED_RESULT Maybe<bool> HasRealNamedCallbackProperty( Local<Context> context, Local<Name> key); V8_DEPRECATED( "Use maybe version", Local<Value> GetRealNamedPropertyInPrototypeChain(Local<String> key)); V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedPropertyInPrototypeChain( Local<Context> context, Local<Name> key); V8_DEPRECATED( "Use maybe version", Maybe<PropertyAttribute> GetRealNamedPropertyAttributesInPrototypeChain( Local<String> key)); V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributesInPrototypeChain(Local<Context> context, Local<Name> key); V8_DEPRECATED("Use maybe version", Local<Value> GetRealNamedProperty(Local<String> key)); V8_WARN_UNUSED_RESULT MaybeLocal<Value> GetRealNamedProperty( Local<Context> context, Local<Name> key); V8_DEPRECATED("Use maybe version", Maybe<PropertyAttribute> GetRealNamedPropertyAttributes( Local<String> key)); V8_WARN_UNUSED_RESULT Maybe<PropertyAttribute> GetRealNamedPropertyAttributes( Local<Context> context, Local<Name> key); bool HasNamedLookupInterceptor(); bool HasIndexedLookupInterceptor(); int GetIdentityHash(); // TODO(dcarney): take an isolate and optionally bail out? Local<Object> Clone(); Local<Context> CreationContext(); bool IsCallable(); bool IsConstructor(); V8_DEPRECATED("Use maybe version", Local<Value> CallAsFunction(Local<Value> recv, int argc, Local<Value> argv[])); V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsFunction(Local<Context> context, Local<Value> recv, int argc, Local<Value> argv[]); V8_DEPRECATED("Use maybe version", Local<Value> CallAsConstructor(int argc, Local<Value> argv[])); V8_WARN_UNUSED_RESULT MaybeLocal<Value> CallAsConstructor( Local<Context> context, int argc, Local<Value> argv[]); V8_DEPRECATE_SOON("Keep track of isolate correctly", Isolate* GetIsolate()); static Local<Object> New(Isolate* isolate); V8_INLINE static Object* Cast(Value* obj); private: Object(); static void CheckCast(Value* obj); Local<Value> SlowGetInternalField(int index); void* SlowGetAlignedPointerFromInternalField(int index); };
以上就是JavaScript V8 Object 内存结构与属性访问详解的内容,更多相关内容请关注PHP中文网(www.php.cn)!