recherche
Maisondéveloppement back-endTutoriel PythonMéthode Python pour extraire les hyperliens des pages Web

De nombreuses personnes envisagent d'utiliser Python pour le développement de robots lorsqu'elles apprennent Python pour la première fois. Puisque vous souhaitez effectuer un robot d'exploration, vous devez d'abord explorer la page Web et extraire l'adresse du lien hypertexte de la page Web. Cet article partagera avec vous une méthode simple, à laquelle vous pourrez vous référer si nécessaire.

Ce qui suit est la méthode d'implémentation la plus simple. Tout d'abord, capturez la page Web cible, puis obtenez le lien hypertexte via une correspondance régulière de l'attribut href dans la balise a

Le code. est la suivante :

import urllib2
import re
 
url = 'http://www.sunbloger.com/'
 
req = urllib2.Request(url)
con = urllib2.urlopen(req)
doc = con.read()
con.close()
 
links = re.findall(r'href\=\"(http\:\/\/[a-zA-Z0-9\.\/]+)\"', doc)
for a in links:
  print a


Pour plus d'articles liés à la méthode Python d'extraction d'hyperliens à partir de pages Web , veuillez faire attention au site Web PHP chinois !


Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Comment utiliser Python pour trouver la distribution ZIPF d'un fichier texteComment utiliser Python pour trouver la distribution ZIPF d'un fichier texteMar 05, 2025 am 09:58 AM

Ce tutoriel montre comment utiliser Python pour traiter le concept statistique de la loi de Zipf et démontre l'efficacité de la lecture et du tri de Python de gros fichiers texte lors du traitement de la loi. Vous vous demandez peut-être ce que signifie le terme distribution ZIPF. Pour comprendre ce terme, nous devons d'abord définir la loi de Zipf. Ne vous inquiétez pas, je vais essayer de simplifier les instructions. La loi de Zipf La loi de Zipf signifie simplement: dans un grand corpus en langage naturel, les mots les plus fréquents apparaissent environ deux fois plus fréquemment que les deuxième mots fréquents, trois fois comme les troisième mots fréquents, quatre fois comme quatrième mots fréquents, etc. Regardons un exemple. Si vous regardez le corpus brun en anglais américain, vous remarquerez que le mot le plus fréquent est "th

Comment utiliser la belle soupe pour analyser HTML?Comment utiliser la belle soupe pour analyser HTML?Mar 10, 2025 pm 06:54 PM

Cet article explique comment utiliser la belle soupe, une bibliothèque Python, pour analyser HTML. Il détaille des méthodes courantes comme find (), find_all (), select () et get_text () pour l'extraction des données, la gestion de diverses structures et erreurs HTML et alternatives (Sel

Modules mathématiques en python: statistiquesModules mathématiques en python: statistiquesMar 09, 2025 am 11:40 AM

Le module statistique de Python fournit de puissantes capacités d'analyse statistique de données pour nous aider à comprendre rapidement les caractéristiques globales des données, telles que la biostatistique et l'analyse commerciale. Au lieu de regarder les points de données un par un, regardez simplement des statistiques telles que la moyenne ou la variance pour découvrir les tendances et les fonctionnalités des données d'origine qui peuvent être ignorées et comparer les grands ensembles de données plus facilement et efficacement. Ce tutoriel expliquera comment calculer la moyenne et mesurer le degré de dispersion de l'ensemble de données. Sauf indication contraire, toutes les fonctions de ce module prennent en charge le calcul de la fonction moyenne () au lieu de simplement additionner la moyenne. Les nombres de points flottants peuvent également être utilisés. Importer au hasard Statistiques d'importation de fracTI

Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch?Comment effectuer l'apprentissage en profondeur avec TensorFlow ou Pytorch?Mar 10, 2025 pm 06:52 PM

Cet article compare TensorFlow et Pytorch pour l'apprentissage en profondeur. Il détaille les étapes impliquées: préparation des données, construction de modèles, formation, évaluation et déploiement. Différences clés entre les cadres, en particulier en ce qui concerne le raisin informatique

Sérialisation et désérialisation des objets Python: partie 1Sérialisation et désérialisation des objets Python: partie 1Mar 08, 2025 am 09:39 AM

La sérialisation et la désérialisation des objets Python sont des aspects clés de tout programme non trivial. Si vous enregistrez quelque chose dans un fichier Python, vous effectuez une sérialisation d'objets et une désérialisation si vous lisez le fichier de configuration, ou si vous répondez à une demande HTTP. Dans un sens, la sérialisation et la désérialisation sont les choses les plus ennuyeuses du monde. Qui se soucie de tous ces formats et protocoles? Vous voulez persister ou diffuser des objets Python et les récupérer dans son intégralité plus tard. C'est un excellent moyen de voir le monde à un niveau conceptuel. Cependant, à un niveau pratique, le schéma de sérialisation, le format ou le protocole que vous choisissez peut déterminer la vitesse, la sécurité, le statut de liberté de maintenance et d'autres aspects du programme

Quelles sont les bibliothèques Python populaires et leurs utilisations?Quelles sont les bibliothèques Python populaires et leurs utilisations?Mar 21, 2025 pm 06:46 PM

L'article traite des bibliothèques Python populaires comme Numpy, Pandas, Matplotlib, Scikit-Learn, Tensorflow, Django, Flask et Demandes, détaillant leurs utilisations dans le calcul scientifique, l'analyse des données, la visualisation, l'apprentissage automatique, le développement Web et H et H

Stracage des pages Web en Python avec une belle soupe: recherche et modification DOMStracage des pages Web en Python avec une belle soupe: recherche et modification DOMMar 08, 2025 am 10:36 AM

Ce tutoriel s'appuie sur l'introduction précédente à la belle soupe, en se concentrant sur la manipulation de Dom au-delà de la simple navigation sur les arbres. Nous explorerons des méthodes et techniques de recherche efficaces pour modifier la structure HTML. Une méthode de recherche DOM commune est ex

Comment créer des interfaces de ligne de commande (CLI) avec Python?Comment créer des interfaces de ligne de commande (CLI) avec Python?Mar 10, 2025 pm 06:48 PM

Cet article guide les développeurs Python sur la construction d'interfaces de ligne de commande (CLI). Il détaille à l'aide de bibliothèques comme Typer, Click et Argparse, mettant l'accent sur la gestion des entrées / sorties et promouvant des modèles de conception conviviaux pour une meilleure convivialité par la CLI.

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
2 Il y a quelques semainesBy尊渡假赌尊渡假赌尊渡假赌
Hello Kitty Island Adventure: Comment obtenir des graines géantes
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌
Musée à deux points: toutes les expositions et où les trouver
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

SublimeText3 Linux nouvelle version

SublimeText3 Linux nouvelle version

Dernière version de SublimeText3 Linux

Version Mac de WebStorm

Version Mac de WebStorm

Outils de développement JavaScript utiles

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

Adaptateur de serveur SAP NetWeaver pour Eclipse

Adaptateur de serveur SAP NetWeaver pour Eclipse

Intégrez Eclipse au serveur d'applications SAP NetWeaver.

SublimeText3 version chinoise

SublimeText3 version chinoise

Version chinoise, très simple à utiliser