


Cet article analyse le pool de processus personnalisé Python avec des exemples. Partagez-le avec tout le monde pour votre référence, les détails sont les suivants :
Le code explique tout :
#encoding=utf-8 #author: walker #date: 2014-05-21 #function: 自定义进程池遍历目录下文件 from multiprocessing import Process, Queue, Lock import time, os #消费者 class Consumer(Process): def __init__(self, queue, ioLock): super(Consumer, self).__init__() self.queue = queue self.ioLock = ioLock def run(self): while True: task = self.queue.get() #队列中无任务时,会阻塞进程 if isinstance(task, str) and task == 'quit': break; time.sleep(1) #假定任务处理需要1秒钟 self.ioLock.acquire() print( str(os.getpid()) + ' ' + task) self.ioLock.release() self.ioLock.acquire() print 'Bye-bye' self.ioLock.release() #生产者 def Producer(): queue = Queue() #这个队列是进程/线程安全的 ioLock = Lock() subNum = 4 #子进程数量 workers = build_worker_pool(queue, ioLock, subNum) start_time = time.time() for parent, dirnames, filenames in os.walk(r'D:\test'): for filename in filenames: queue.put(filename) ioLock.acquire() print('qsize:' + str(queue.qsize())) ioLock.release() while queue.qsize() > subNum * 10: #控制队列中任务数量 time.sleep(1) for worker in workers: queue.put('quit') for worker in workers: worker.join() ioLock.acquire() print('Done! Time taken: {}'.format(time.time() - start_time)) ioLock.release() #创建进程池 def build_worker_pool(queue, ioLock, size): workers = [] for _ in range(size): worker = Consumer(queue, ioLock) worker.start() workers.append(worker) return workers if __name__ == '__main__': Producer()
ps :
self.ioLock.acquire() ... self.ioLock.release()
Disponible :
with self.ioLock: ...
substitution.
Autre exemple amusant :
#encoding=utf-8 #author: walker #date: 2016-01-06 #function: 一个多进程的好玩例子 import os, sys, time from multiprocessing import Pool cur_dir_fullpath = os.path.dirname(os.path.abspath(__file__)) g_List = ['a'] #修改全局变量g_List def ModifyDict_1(): global g_List g_List.append('b') #修改全局变量g_List def ModifyDict_2(): global g_List g_List.append('c') #处理一个 def ProcOne(num): print('ProcOne ' + str(num) + ', g_List:' + repr(g_List)) #处理所有 def ProcAll(): pool = Pool(processes = 4) for i in range(1, 20): #ProcOne(i) #pool.apply(ProcOne, (i,)) pool.apply_async(ProcOne, (i,)) pool.close() pool.join() ModifyDict_1() #修改全局变量g_List if __name__ == '__main__': ModifyDict_2() #修改全局变量g_List print('In main g_List :' + repr(g_List)) ProcAll()
Le résultat de l'exécution sous Windows 7 :
λ python3 demo.py In main g_List :['a', 'b', 'c'] ProcOne 1, g_List:['a', 'b'] ProcOne 2, g_List:['a', 'b'] ProcOne 3, g_List:['a', 'b'] ProcOne 4, g_List:['a', 'b'] ProcOne 5, g_List:['a', 'b'] ProcOne 6, g_List:['a', 'b'] ProcOne 7, g_List:['a', 'b'] ProcOne 8, g_List:['a', 'b'] ProcOne 9, g_List:['a', 'b'] ProcOne 10, g_List:['a', 'b'] ProcOne 11, g_List:['a', 'b'] ProcOne 12, g_List:['a', 'b'] ProcOne 13, g_List:['a', 'b'] ProcOne 14, g_List:['a', 'b'] ProcOne 15, g_List:['a', 'b'] ProcOne 16, g_List:['a', 'b'] ProcOne 17, g_List:['a', 'b'] ProcOne 18, g_List:['a', 'b'] ProcOne 19, g_List:['a', 'b']
Le résultat de l'exécution sous Ubuntu 14.04 :
In main g_List :['a', 'b', 'c'] ProcOne 1, g_List:['a', 'b', 'c'] ProcOne 2, g_List:['a', 'b', 'c'] ProcOne 3, g_List:['a', 'b', 'c'] ProcOne 5, g_List:['a', 'b', 'c'] ProcOne 4, g_List:['a', 'b', 'c'] ProcOne 8, g_List:['a', 'b', 'c'] ProcOne 9, g_List:['a', 'b', 'c'] ProcOne 7, g_List:['a', 'b', 'c'] ProcOne 11, g_List:['a', 'b', 'c'] ProcOne 6, g_List:['a', 'b', 'c'] ProcOne 12, g_List:['a', 'b', 'c'] ProcOne 13, g_List:['a', 'b', 'c'] ProcOne 10, g_List:['a', 'b', 'c'] ProcOne 14, g_List:['a', 'b', 'c'] ProcOne 15, g_List:['a', 'b', 'c'] ProcOne 16, g_List:['a', 'b', 'c'] ProcOne 17, g_List:['a', 'b', 'c'] ProcOne 18, g_List:['a', 'b', 'c'] ProcOne 19, g_List:['a', 'b', 'c']
Vous pouvez voir que la deuxième modification sous Windows 7 était pas réussi, et La modification a réussi sous Ubuntu. Selon limodou, l'auteur d'uliweb, la raison est que sous Windows, le processus enfant est implémenté par redémarrage ; sous Linux, il est implémenté par fork ;
Pour plus d'articles sur l'analyse des instances de pool de processus personnalisés Python [problèmes de modèle de producteur et de consommateur], veuillez prêter attention au site Web PHP chinois !

Les raisons pour lesquelles les scripts Python ne peuvent pas fonctionner sur les systèmes UNIX incluent: 1) des autorisations insuffisantes, en utilisant Chmod xyour_script.py pour accorder des autorisations d'exécution; 2) Ligne Shebang incorrecte ou manquante, vous devez utiliser #! / Usr / bin / enwpython; 3) Paramètres de variables d'environnement incorrectes, vous pouvez imprimer OS.environ Debogging; 4) En utilisant la mauvaise version Python, vous pouvez spécifier la version sur la ligne Shebang ou la ligne de commande; 5) Problèmes de dépendance, en utilisant un environnement virtuel pour isoler les dépendances; 6) Erreurs de syntaxe, utilisez python-mpy_compileyour_script.py pour détecter.

L'utilisation de tableaux Python est plus adapté au traitement de grandes quantités de données numériques que les listes. 1) Les tableaux économisent plus de mémoire, 2) les tableaux sont plus rapides pour fonctionner par des valeurs numériques, 3) la cohérence de type de force des tableaux, 4) Les tableaux sont compatibles avec les tableaux C, mais ne sont pas aussi flexibles et pratiques que les listes.

Listes sont une meilleure ancêtres et des datatatates de mix

NumpyManagesMemoryForLargeArraySEfficientlyUsingViews, Copies andMemory-MapyPiles.1) Vues Allowcing withoutcopy

ListSinpythondonoTequireImporttingAmodule, tandis que les listes de la part de la variation de la daymoduleeeedanimport.1)

PythonlistScanstoreanyDatatype, ArrayModulearRaySstoreOneType, et NumpyArraysArnumericalComptations.1) ListesaSaSatilebutlessmemory-Efficient.2) NumpyArraySareMory-EfficientForHomoGeneousData.3)

Lorsque vous vous assumez de la valeur de la valeur de la datyypie de la datyylethonarray.

PythonlistSaReparmentofthestandardLibrary, tandis que les coloccules de colocède, tandis que les colocculations pour la base de la Parlementaire, des coloments de forage polyvalent, tandis que la fonctionnalité de la fonctionnalité nettement adressée.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

Navigateur d'examen sécurisé
Safe Exam Browser est un environnement de navigation sécurisé permettant de passer des examens en ligne en toute sécurité. Ce logiciel transforme n'importe quel ordinateur en poste de travail sécurisé. Il contrôle l'accès à n'importe quel utilitaire et empêche les étudiants d'utiliser des ressources non autorisées.

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

mPDF
mPDF est une bibliothèque PHP qui peut générer des fichiers PDF à partir de HTML encodé en UTF-8. L'auteur original, Ian Back, a écrit mPDF pour générer des fichiers PDF « à la volée » depuis son site Web et gérer différentes langues. Il est plus lent et produit des fichiers plus volumineux lors de l'utilisation de polices Unicode que les scripts originaux comme HTML2FPDF, mais prend en charge les styles CSS, etc. et présente de nombreuses améliorations. Prend en charge presque toutes les langues, y compris RTL (arabe et hébreu) et CJK (chinois, japonais et coréen). Prend en charge les éléments imbriqués au niveau du bloc (tels que P, DIV),

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire
