Maison >développement back-end >Tutoriel Python >Parlons brièvement du multi-processus en python
Le module multitraitement est l'un des modules les plus avancés et les plus puissants de la bibliothèque Python. Cet article vous donnera une brève introduction aux compétences générales du multitraitement
Le processus est géré par le système lui-même.
1 : La manière d'écrire la plus basique
from multiprocessing import Pool def f(x): return x*x if __name__ == '__main__': p = Pool(5) print(p.map(f, [1, 2, 3])) [1, 4, 9]
2 En fait, le processus est généré via la méthode os.fork.
Sous Unix, tous les processus sont générés via la méthode fork.
multiprocessing Process os info(title): title , __name__ (os, ): , os.getppid() , os.getpid() f(name): info() , name __name__ == : info() p = Process(=f, =(,)) p.start() p.join()
3. Mémoire partagée du fil de discussion
threading run(info_list,n): info_list.append(n) info_list __name__ == : info=[] i (): p=threading.Thread(=run,=[info,i]) p.start() [0] [0, 1] [0, 1, 2] [0, 1, 2, 3] [0, 1, 2, 3, 4] [0, 1, 2, 3, 4, 5] [0, 1, 2, 3, 4, 5, 6] [0, 1, 2, 3, 4, 5, 6, 7] [0, 1, 2, 3, 4, 5, 6, 7, 8] [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Le processus est mémoire non partagée :
multiprocessing Process run(info_list,n): info_list.append(n) info_list __name__ == : info=[] i (): p=Process(=run,=[info,i]) p.start() [1] [2] [3] [0] [4] [5] [6] [7] [8] [9]
Si vous souhaitez partager de la mémoire, vous devez utiliser la file d'attente
multiprocessing Process, Queue f(q,n): q.put([n,]) __name__ == : q=Queue() i (): p=Process(=f,=(q,i)) p.start() : q.get()
dans le module multitraitement
4. Verrouillage : uniquement pour le partage d'écran, car le processus est indépendant, il n'est donc pas utile pour plusieurs processus
multiprocessing Process, Lock f(l, i): l.acquire() , i l.release() __name__ == : lock = Lock() num (): Process(=f, =(lock, num)).start() hello world 0 hello world 1 hello world 2 hello world 3 hello world 4 hello world 5 hello world 6 hello world 7 hello world 8 hello world 9
5. Partage de mémoire inter-processus : Valeur, Tableau
multiprocessing Process, Value, Array f(n, a): n.value = i ((a)): a[i] = -a[i] __name__ == : num = Value(, ) arr = Array(, ()) num.value arr[:] p = Process(=f, =(num, arr)) p.start() p.join() 0.0 [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 3.1415927 [0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
Méthode de partage #manager, mais lente
multiprocessing Process, Manager f(d, l): d[] = d[] = d[] = l.reverse() __name__ == : manager = Manager() d = manager.dict() l = manager.list(()) p = Process(=f, =(d, l)) p.start() p.join() d l # print '-------------'这里只是另一种写法 # print pool.map(f,range(10)) {0.25: None, 1: '1', '2': 2} [9, 8, 7, 6, 5, 4, 3, 2, 1, 0]
#Asynchrone : Cette façon d'écrire est rarement utilisée
multiprocessing Pool time f(x): x*x time.sleep() x*x __name__ == : pool=Pool(=) res_list=[] i (): res=pool.apply_async(f,[i]) res_list.append(res) r res_list: r.get(timeout=10) #超时时间
Le synchrone l'un est appliquer
Pour plus d'articles sur le simple fait de parler du multi-processus en python, veuillez faire attention au site Web PHP chinois !