Maison  >  Article  >  développement back-end  >  Python入门学习之高级特性

Python入门学习之高级特性

黄舟
黄舟original
2016-12-16 16:34:421335parcourir

一 前言

  学习高级特性的时候也许会感觉到有些许的难,这些新的特性在以前c/c++中是没有遇到过的,而且c/c++也不支持这样简便但又强大的语法。

 

二 切片

  谈到切片,可以想像到切萝卜,拿到萝卜的某一段,用这个来比喻这里的切片非常贴切。python中的切片操作就是取list或者tuple中的某一段。

  比如,有以下定义的list:

#define a list
l=['Luffy','Corey','Nancy','Jeffrey','Kyle','Avery','Jason','Sunny']

   取其前3个元素的方法有两种,代码如下:

>>> l[:3]
['Luffy', 'Corey', 'Nancy']
>>> l[0:3]
['Luffy', 'Corey', 'Nancy']

   也就是说,从0开始的话可以省略。

  取第2个到第4个元素的代码如下:

>>> l[1:5]
['Corey', 'Nancy', 'Jeffrey', 'Kyle']

   取倒数第2个直到最后一个的代码如下:

>>> l[-2:]
['Jason', 'Sunny']

   在不知道list长度的情况下取整个list的内容,代码如下:

>>> l[:]
['Luffy', 'Corey', 'Nancy', 'Jeffrey', 'Kyle', 'Avery', 'Jason', 'Sunny']

   在整个list中每2个取1个:

>>> l[::2]
['Luffy', 'Nancy', 'Kyle', 'Jason']

   在list中前6个中每2个取1个:

>>> l[:5:2]
['Luffy', 'Nancy', 'Kyle']

   在实际的编辑代码中,经常可以把这里的切片操作中的指向list的变量替换成list本身,如下所示:

>>> ['Luffy', 'Corey', 'Nancy', 'Jeffrey', 'Kyle', 'Avery', 'Jason', 'Sunny'][:3]
['Luffy', 'Corey', 'Nancy']

   tuple和字符串都可以看成是一个list,故上述语法也是可以对其使用的。

 

三 列表生成式

  列表生成式(List ComPRehensions)是python中内置的非常强大的用来创建list的生成式。

  最简单的例子,我们要创建一个从1到10的列表,可以用

list(range(1,11))

 这样简简单单的一行代码搞定。但是要生成更复杂的列表该怎么办呢?

  生成[1x1,2x2,3x3,...,10x10]这样的列表该怎么办呢?使用循环当然是可以实现的,但是代码过于复杂,使用列表生成式则只需要如下一行代码:

>>> [x*x for x in range(1,11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

   如果再加上只计算偶数的平方,那也不复杂,只需要在for循环后面加上if判断条件即可。

>>> [x*x for x in range(1,11) if x % 2 == 0]
[4, 16, 36, 64, 100]

   还可以使用两层循环,

>>> [x+y for x in 'ABC' for y in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

   写了这么多的列表生成式,我想大家也都明白了这语法的由来。其实也就是将正常的语法反转,将最里层的计算放在最前面。如最后一个列表生成式可以写成如下正常的语法:

for x in 'ABC':
for y in 'XYZ':
print(x+y)

 

四 生成器

  有了列表生成式,我们可以直接创建一个列表,但是如果考虑到内存限制时,我们就不能创建元素个数很多的列表了,那此时我们该怎么办呢?

  python提供一个叫做生成器的机制,通过生成器可以推算出后续的元素,这样就不用一次创建出所有的元素。要创建一个生成器,有两种方法:

  第一种方法:把列表生成式的[]改成(),就创建了一个generator。

  如下面代码所示:

 

>>> g=(x for x in range(10))
>>> print(next(g))
0

  要获取生成器的第一个元素,可以直接对g调用next函数。当然,也可以使用for循环来遍历整个生成器下一步生成的数据。

  第二种方法:如果推算的方法过于复杂,列表生成式无法实现时,就可以通过函数来实现。相对于从列表生成式到Generator,从函数到Generator也很简单,只需要先写好函数,然后再在某个位置上加上yield关键字就可以了。

  比如,生成一个Fibonacci数列的函数如下:

def fib(max):
   n, a, b = 0, 0, 1
   while n < max:
       print(b)
       a, b = b, a + b
       n = n + 1
   return 'done'

 

 要把这个函数转换成generator,只需要把print(b)这行代码替换成yield b就可以了。

def fib(max):
   n, a, b = 0, 0, 1
   while n < max:
       yield b
       a, b = b, a + b
       n = n + 1
   return 'done'

 

 含有yield关键字的函数就不再是一个函数了,而是一个generator。要注意的是,generator的执行流程与函数不一样,在遇到yield时返回,当下次再调用时再从上次返回的yield处继续执行。

 

 五 迭代器

  可以直接作用于for循环的对象统称为可迭代对象:Iterable,可以使用isinstance()判断一个对象是否是Iterable对象。生成器不仅可以由for循环进行遍历,还可以使用next()遍历。我们把可以被next()函数调用并不断返回下一个值的对象统称为迭代器:Iterator。

  这里要区分一个Iterable和Iterator,list,dict,str都是Iterable,但不是Iterator(可以使用iter()函数把Iterable变成Iterator)。Iterator可以是一个无限大的数据流,不能提前知道整个序列的长度,这些都是Iterable不能达到的要求。

 

六 后记

  这里提到的都是我在python中才学习到的一些编程的新特性。如有错误之处,敬请留言!!!

 以上就是Python入门学习之高级特性的内容,更多相关文章请关注PHP中文网(www.php.cn)! 


Déclaration:
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn