Maison >interface Web >js tutoriel >WebGL utilise FBO pour compléter l'exemple complet de l'effet de carte de cube (avec téléchargement du code source de démonstration)_compétences javascript
L'exemple de cet article décrit comment WebGL utilise FBO pour compléter l'effet de carte cubique. Partagez-le avec tout le monde pour votre référence, les détails sont les suivants :
Cet article enregistre principalement quelques points de base de WebGL, et apprend également à utiliser FBO et les cartes d'environnement. Jetons d'abord un coup d'œil aux rendus (nécessite la prise en charge de WebGL, Chrome, Firefox et IE11).
Le processus principal de mise en œuvre est le suivant : utilisez d'abord FBO pour afficher l'environnement actuel dans la texture du cube, puis dessinez le cube actuel, et enfin dessinez la balle, et collez la texture associée au FBO sur la sphère.
Lors du démarrage de WebGL, il est préférable d'avoir quelques bases d'OpenGL. Lorsque vous avez parlé plus tôt de la perfection d'Obj et de MD2, vous avez peut-être découvert qu'en raison de l'ajout et de l'utilisation de shaders, la plupart des API OpenGL ne sont plus utilisées. WebGL est similaire à ceci. La plupart des fonctions sont des shaders complétant les fonctions principales. Vous pouvez les comparer avec les précédents pour voir s'ils sont similaires. Afin de vous familiariser avec les fonctions de base de WebGL. l'article n'utilise pas de framework relativement complet. Un framework (gl-matrix.js) est utilisé pour aider à calculer les matrices.
Semblable à l'utilisation d'OpenGL, nous devons initialiser l'environnement d'utilisation et extraire une partie de l'utilisation globale. Le code pertinent est le suivant :
Initialisation :
var gl;//WebGLRenderingContext var cubeVBO;//Cube buffer ID var sphereVBO;//球体VBO var sphereEBO;//球体EBO var cubeTexID;//立方体纹理ID var fboBuffer;//桢缓存对象 var glCubeProgram;//立方体着色器应用 var glSphereProgram;//球体着色器应用 var fboWidth = 512;//桢缓存绑定纹理宽度 var fboHeight = 512;//桢缓存绑定纹理高度 var targets;//立方体贴图六个方向 var pMatrix = mat4.create();//透视矩阵 var vMatrix = mat4.create();//视图矩阵 var eyePos = vec3.fromValues(0.0, 1.0, 0.0);//眼睛位置 var eyeLookat = vec3.fromValues(0.0, -0.0, 0.0);//眼睛方向 var spherePos = vec3.fromValues(0.0, -0.0, 0.0);//球体位置 var canvanName; function webGLStart(cName) { canvanName = cName; InitWebGL(); InitCubeShader(); InitSphereShader(); InitCubeBuffer(); InitSphereBuffer(); InitFBOCube(); //RenderFBO(); gl.clearColor(0.0, 0.0, 0.0, 1.0); gl.enable(gl.DEPTH_TEST); tick(); } function InitWebGL() { //var canvas = document.getElementById(canvanName); InitGL(canvanName); } function InitGL(canvas) { try { //WebGLRenderingContext gl = canvas.getContext("experimental-webgl"); gl.viewportWidth = canvas.width; gl.viewportHeight = canvas.height; targets = [gl.TEXTURE_CUBE_MAP_POSITIVE_X, gl.TEXTURE_CUBE_MAP_NEGATIVE_X, gl.TEXTURE_CUBE_MAP_POSITIVE_Y, gl.TEXTURE_CUBE_MAP_NEGATIVE_Y, gl.TEXTURE_CUBE_MAP_POSITIVE_Z, gl.TEXTURE_CUBE_MAP_NEGATIVE_Z]; } catch (e) { } if (!gl) { alert("你的浏览器不支持WebGL"); } }
Ici, nous initialisons les environnements supérieur et inférieur de WebGL dans la page Web et donnons une série de processus d'initialisation. La pièce, c'est-à-dire le code correspondant au cube, est indiquée ci-dessous.
Cube :
function InitCubeShader() { //WebGLShader var shader_vertex = GetShader("cubeshader-vs"); var shader_fragment = GetShader("cubeshader-fs"); //WebglCubeProgram glCubeProgram = gl.createProgram(); gl.attachShader(glCubeProgram, shader_vertex); gl.attachShader(glCubeProgram, shader_fragment); gl.linkProgram(glCubeProgram); if (!gl.getProgramParameter(glCubeProgram, gl.LINK_STATUS)) { alert("Shader hava error."); } gl.useProgram(glCubeProgram); glCubeProgram.positionAttribute = gl.getAttribLocation(glCubeProgram, "a_position"); glCubeProgram.normalAttribute = gl.getAttribLocation(glCubeProgram, "a_normal"); glCubeProgram.texCoordAttribute = gl.getAttribLocation(glCubeProgram, "a_texCoord"); glCubeProgram.view = gl.getUniformLocation(glCubeProgram, "view"); glCubeProgram.perspective = gl.getUniformLocation(glCubeProgram, "perspective"); } function InitCubeBuffer() { var cubeData = [ -10.0, -10.0, -10.0, 0.0, 0.0, -10.0, 1.0, 0.0, -10.0, 10.0, -10.0, 0.0, 0.0, -10.0, 1.0, 1.0, 10.0, 10.0, -10.0, 0.0, 0.0, -10.0, 0.0, 1.0, 10.0, 10.0, -10.0, 0.0, 0.0, -10.0, 0.0, 1.0, 10.0, -10.0, -10.0, 0.0, 0.0, -10.0, 0.0, 0.0, -10.0, -10.0, -10.0, 0.0, 0.0, -10.0, 1.0, 0.0, -10.0, -10.0, 10.0, 0.0, 0.0, 10.0, 0.0, 0.0, 10.0, -10.0, 10.0, 0.0, 0.0, 10.0, 1.0, 0.0, 10.0, 10.0, 10.0, 0.0, 0.0, 10.0, 1.0, 1.0, 10.0, 10.0, 10.0, 0.0, 0.0, 10.0, 1.0, 1.0, -10.0, 10.0, 10.0, 0.0, 0.0, 10.0, 0.0, 1.0, -10.0, -10.0, 10.0, 0.0, 0.0, 10.0, 0.0, 0.0, -10.0, -10.0, -10.0, 0.0, -10.0, 0.0, 0.0, 0.0, 10.0, -10.0, -10.0, 0.0, -10.0, 0.0, 1.0, 0.0, 10.0, -10.0, 10.0, 0.0, -10.0, 0.0, 1.0, 1.0, 10.0, -10.0, 10.0, 0.0, -10.0, 0.0, 1.0, 1.0, -10.0, -10.0, 10.0, 0.0, -10.0, 0.0, 0.0, 1.0, -10.0, -10.0, -10.0, 0.0, -10.0, 0.0, 0.0, 0.0, 10.0, -10.0, -10.0, 10.0, 0.0, 0.0, 0.0, 0.0, 10.0, 10.0, -10.0, 10.0, 0.0, 0.0, 1.0, 0.0, 10.0, 10.0, 10.0, 10.0, 0.0, 0.0, 1.0, 1.0, 10.0, 10.0, 10.0, 10.0, 0.0, 0.0, 1.0, 1.0, 10.0, -10.0, 10.0, 10.0, 0.0, 0.0, 0.0, 1.0, 10.0, -10.0, -10.0, 10.0, 0.0, 0.0, 0.0, 0.0, 10.0, 10.0, -10.0, 0.0, 10.0, 0.0, 0.0, 0.0, -10.0, 10.0, -10.0, 0.0, 10.0, 0.0, 1.0, 0.0, -10.0, 10.0, 10.0, 0.0, 10.0, 0.0, 1.0, 1.0, -10.0, 10.0, 10.0, 0.0, 10.0, 0.0, 1.0, 1.0, 10.0, 10.0, 10.0, 0.0, 10.0, 0.0, 0.0, 1.0, 10.0, 10.0, -10.0, 0.0, 10.0, 0.0, 0.0, 0.0, -10.0, 10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 0.0, -10.0, -10.0, -10.0, -10.0, 0.0, 0.0, 1.0, 0.0, -10.0, -10.0, 10.0, -10.0, 0.0, 0.0, 1.0, 1.0, -10.0, -10.0, 10.0, -10.0, 0.0, 0.0, 1.0, 1.0, -10.0, 10.0, 10.0, -10.0, 0.0, 0.0, 0.0, 1.0, -10.0, 10.0, -10.0, -10.0, 0.0, 0.0, 0.0, 0.0, ]; cubeVBO = gl.createBuffer(); gl.bindBuffer(gl.ARRAY_BUFFER, cubeVBO); gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(cubeData), gl.STATIC_DRAW); } function RenderCube() { gl.useProgram(glCubeProgram); gl.bindBuffer(gl.ARRAY_BUFFER, cubeVBO); gl.vertexAttribPointer(glCubeProgram.positionAttribute, 3, gl.FLOAT, false, 32, 0); gl.enableVertexAttribArray(glCubeProgram.positionAttribute); gl.vertexAttribPointer(glCubeProgram.normalAttribute, 3, gl.FLOAT, false, 32, 12); gl.enableVertexAttribArray(glCubeProgram.normalAttribute); gl.vertexAttribPointer(glCubeProgram.texCoordAttribute, 2, gl.FLOAT, false, 32, 24); gl.enableVertexAttribArray(glCubeProgram.texCoordAttribute); gl.uniformMatrix4fv(glCubeProgram.view, false, vMatrix); gl.uniformMatrix4fv(glCubeProgram.perspective, false, pMatrix); gl.drawArrays(gl.TRIANGLES, 0, 36); }
Le code ci-dessus est principalement divisé en initialisant l'objet shader du cube, en initialisant le cache correspondant, puis en dessinant le cube. On peut dire que dans Opengl, si vous utilisez un shader pour dessiner, le processus est similaire. Dans Opengl, il n'y a pas de pipeline fixe. Certaines fonctions telles que InterleavedArrays sont utilisées pour spécifier des sommets, des normales ou des textures, et vertexAttribPointer est utilisé pour transférer des données entre l'application et le shader. La version améliorée du transfert de paramètres dans la précédente implémentation d'animation d'image MD2 a également des applications connexes.
Le code principal correspondant au cube shader est le suivant :
Implémentation du cube shader :
<script id="cubeshader-fs" type="x-shader/x-fragment"> precision mediump float; varying vec3 normal; varying vec3 tex1; varying vec3 tex2; void main( void ) { float x = tex1.x * 6.28 * 8.0; //2兀 * 8 float y = tex1.y * 6.28 * 8.0; //2兀 * 8 //cos(x)= 8个 (1 -1 1) gl_FragColor = vec4(tex2,1.0) * vec4(sign(cos(x)+cos(y))); // //gl_FragColor = vec4(normal*vec3(0.5)+vec3(0.5), 1); } </script> <script id="cubeshader-vs" type="x-shader/x-vertex"> attribute vec3 a_position; attribute vec3 a_normal; attribute vec2 a_texCoord; uniform mat4 view; uniform mat4 perspective; varying vec3 normal; varying vec3 tex1; varying vec3 tex2; void main( void ) { gl_Position = perspective * view * vec4(a_position,1.0); normal = a_normal; tex1 = vec3(a_texCoord,0.0); tex2 = normalize(a_position)*0.5+0.5; } </script>
Dans le shader, il n'y a pas de fonction ftransform() à appeler. Vous devez transmettre vous-même le modèle, la vue et la matrice de perspective. Ici, le modèle est dessiné avec l'origine comme centre, ce qui signifie la matrice de vue du modèle. est également la matrice de vue, donc le calcul de la position de l'écran ne nécessite que les matrices de vue et de perspective. Dans le fragment shader, x et y sont transmis à partir des coordonnées de texture dans le vertex shader. Le processus correspondant est 6,28*8,0, ce qui équivaut à 8 360 degrés. Il est utilisé pour contrôler l'affichage des blocs sur le cube, et tex2. est dans le shader. La valeur du mappage de sommets [0,1] définit respectivement différentes significations pour les six côtés du cube, puis utilise le produit de deux vecteurs pour mélanger les deux affichages de couleurs, gl_FragColor = vec4(tex2,1.0) * vec4(signe( cos(x) cos(y))).
Avant d'afficher la sphère, vous devez d'abord générer le dessin du cube de l'environnement actuel. Ici, utilisez FBO. Générez d'abord le cache de cadre et le dessin du cube, puis associez-les à l'origine comme centre, dessinez-les. bas, gauche, avant et droite respectivement, puis utilisez Le tampon de trame est respectivement affiché sur les six faces du cube. Le code principal est le suivant :
.Texture FBO et cube :
function InitFBOCube() { // WebGLFramebuffer fboBuffer = gl.createFramebuffer(); gl.bindFramebuffer(gl.FRAMEBUFFER, fboBuffer); fboBuffer.width = 512; fboBuffer.height = 512; cubeTexID = gl.createTexture(); gl.bindTexture(gl.TEXTURE_CUBE_MAP, cubeTexID); gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_WRAP_S, gl.CLAMP_TO_EDGE); gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_WRAP_T, gl.CLAMP_TO_EDGE); gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MIN_FILTER, gl.LINEAR); gl.texParameteri(gl.TEXTURE_CUBE_MAP, gl.TEXTURE_MAG_FILTER, gl.LINEAR); for (var i = 0; i < targets.length; i++) { gl.texImage2D(targets[i], 0, gl.RGBA, fboBuffer.width, fboBuffer.height, 0, gl.RGBA, gl.UNSIGNED_BYTE, null); } gl.bindFramebuffer(gl.FRAMEBUFFER, null); } function RenderFBO() { gl.disable(gl.DEPTH_TEST); gl.viewport(0, 0, fboBuffer.width, fboBuffer.height); gl.clearColor(0.0, 0.0, 0.0, 1.0); gl.bindFramebuffer(gl.FRAMEBUFFER, fboBuffer); for (var i = 0; i < targets.length; i++) { gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, targets[i], cubeTexID, null); gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); } mat4.perspective(pMatrix, 45, fboBuffer.width / fboBuffer.height, 0.1, 100.0); for (var i = 0; i < targets.length; i++) { gl.framebufferTexture2D(gl.FRAMEBUFFER, gl.COLOR_ATTACHMENT0, targets[i], cubeTexID, null); var lookat = vec3.create(); var up = vec3.create(); up[1] = 1.0; if (i == 0) { lookat[0] = -1.0; } else if (i == 1) { lookat[0] = 1.0; } else if (i == 2) { lookat[1] = -1.0; up[0] = 1.0; } else if (i == 3) { lookat[1] = 1.0; up[0] = 1.0; } else if (i == 4) { lookat[2] == -1.0; } else if (i == 5) { lookat[2] = 1.0; } else { } //vec3.fromValues(0.0, 0.0, 0.0) vMatrix = mat4.create(); mat4.lookAt(vMatrix, vec3.fromValues(0.0, 0.0, 0.0), lookat, up); //mat4.scale(vMatrix, vMatrix, vec3.fromValues(-1.0, -1.0, -1.0)); //mat4.translate(vMatrix, vMatrix, spherePos); RenderCube(); } gl.bindFramebuffer(gl.FRAMEBUFFER, null); gl.enable(gl.DEPTH_TEST); }
Je ne sais pas s'il y a un problème avec l'algorithme matriciel fourni par gl-matrix ci-dessus, ou si cela devrait être comme ça. La carte de texture générée en montant et en descendant est fausse, et le vecteur ascendant de la caméra. doit être dévié. Étant donné que la position de la caméra est parallèle à l'axe Z généré de la cible et à l'axe UP défini, l'axe X ne peut pas être calculé correctement et l'axe UP correspondant ne peut pas non plus être calculé, provoquant une erreur dans la matrice de vue correspondante.
La dernière étape consiste à dessiner la sphère. Le code est principalement similaire à celui du cube. Faites attention à l'algorithme des sommets de la sphère.
Sphère :
function InitSphereShader() { //WebGLShader var shader_vertex = GetShader("sphereshader-vs"); var shader_fragment = GetShader("sphereshader-fs"); //WebglCubeProgram glSphereProgram = gl.createProgram(); gl.attachShader(glSphereProgram, shader_vertex); gl.attachShader(glSphereProgram, shader_fragment); gl.linkProgram(glSphereProgram); if (!gl.getProgramParameter(glSphereProgram, gl.LINK_STATUS)) { alert("Shader hava error."); } glSphereProgram.positionAttribute = gl.getAttribLocation(glSphereProgram, "a_position"); glSphereProgram.normalAttribute = gl.getAttribLocation(glSphereProgram, "a_normal"); glSphereProgram.eye = gl.getUniformLocation(glSphereProgram, "eye"); glSphereProgram.mapCube = gl.getUniformLocation(glSphereProgram, "mapCube"); glSphereProgram.model = gl.getUniformLocation(glSphereProgram, "model"); glSphereProgram.view = gl.getUniformLocation(glSphereProgram, "view"); glSphereProgram.perspective = gl.getUniformLocation(glSphereProgram, "perspective"); } function InitSphereBuffer() { var radius = 1; var segments = 16; var rings = 16; var length = segments * rings * 6; var sphereData = new Array(); var sphereIndex = new Array(); for (var y = 0; y < rings; y++) { var phi = (y / (rings - 1)) * Math.PI; for (var x = 0; x < segments; x++) { var theta = (x / (segments - 1)) * 2 * Math.PI; sphereData.push(radius * Math.sin(phi) * Math.cos(theta)); sphereData.push(radius * Math.cos(phi)); sphereData.push(radius * Math.sin(phi) * Math.sin(theta)); sphereData.push(Math.sin(phi) * Math.cos(theta)); sphereData.push(radius * Math.cos(phi)) sphereData.push(Math.sin(phi) * Math.sin(theta)); } } for (var y = 0; y < rings - 1; y++) { for (var x = 0; x < segments - 1; x++) { sphereIndex.push((y + 0) * segments + x); sphereIndex.push((y + 1) * segments + x); sphereIndex.push((y + 1) * segments + x + 1); sphereIndex.push((y + 1) * segments + x + 1); sphereIndex.push((y + 0) * segments + x + 1) sphereIndex.push((y + 0) * segments + x); } } sphereVBO = gl.createBuffer(); gl.bindBuffer(gl.ARRAY_BUFFER, sphereVBO); gl.bufferData(gl.ARRAY_BUFFER, new Float32Array(sphereData), gl.STATIC_DRAW); sphereVBO.numItems = segments * rings; sphereEBO = gl.createBuffer(); gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, sphereEBO); gl.bufferData(gl.ELEMENT_ARRAY_BUFFER, new Uint16Array(sphereIndex), gl.STATIC_DRAW); sphereEBO.numItems = sphereIndex.length; } function RenderSphere() { gl.useProgram(glSphereProgram); gl.bindBuffer(gl.ARRAY_BUFFER, sphereVBO); gl.vertexAttribPointer(glSphereProgram.positionAttribute, 3, gl.FLOAT, false, 24, 0); gl.enableVertexAttribArray(glSphereProgram.positionAttribute); gl.vertexAttribPointer(glSphereProgram.normalAttribute, 3, gl.FLOAT, false, 24, 12); gl.enableVertexAttribArray(glSphereProgram.normalAttribute); var mMatrix = mat4.create(); mat4.translate(mMatrix, mMatrix, spherePos); gl.uniform3f(glSphereProgram.eye, eyePos[0],eyePos[1],eyePos[2]); gl.uniformMatrix4fv(glSphereProgram.model, false, mMatrix); gl.uniformMatrix4fv(glSphereProgram.view, false, vMatrix); gl.uniformMatrix4fv(glSphereProgram.perspective, false, pMatrix); gl.activeTexture(gl.TEXTURE0); gl.bindTexture(gl.TEXTURE_CUBE_MAP, cubeTexID); //gl.uniformMatrix4fv(glSphereProgram.mapCube, 0); gl.bindBuffer(gl.ELEMENT_ARRAY_BUFFER, sphereEBO); gl.drawElements(gl.TRIANGLES, sphereEBO.numItems, gl.UNSIGNED_SHORT, 0); gl.bindTexture(gl.TEXTURE_2D, null); }
Comme vous pouvez le voir, ce sont les trois mêmes étapes que le cube, initialiser le shader, initialiser les sommets et les normales, et dessiner. Le code du shader est donné ci-dessous :
Sphère Shader :
<script id="sphereshader-fs" type="x-shader/x-fragment"> precision mediump float; varying vec3 normal; varying vec3 eyevec; uniform samplerCube mapCube; void main( void ) { gl_FragColor = textureCube(mapCube, reflect(normalize(-eyevec), normalize(normal))); } </script> <script id="sphereshader-vs" type="x-shader/x-vertex"> attribute vec3 a_position; attribute vec3 a_normal; uniform mat4 model; uniform mat4 view; uniform mat4 perspective; uniform vec3 eye; varying vec3 normal; varying vec3 eyevec; void main( void ) { gl_Position = perspective * view * model * vec4(a_position,1.0); eyevec = -eye;// a_position.xyz; normal = a_normal; } </script>
Un peu différent du cube précédent, c'est que la sphère a sa propre matrice de modèle, ce qui est également un usage normal. Ensuite, l'œil correspondant au vecteur du sommet de la sphère et à la normale sont passés dans le fragment shader, c'est utile. Pour la texture cubique générée précédemment, nous pouvons obtenir la couleur de l'environnement correspondant à la sphère actuelle en fonction du point sur la texture cubique que l'œil passe par le sommet et reflète le vecteur normal correspondant. Ici, nous pouvons appeler directement. textureCube pour terminer le processus mentionné ci-dessus, nous n'avons pas besoin de le calculer manuellement.
Pour l'utilisation de la fonction GetShader, veuillez vous référer à l'explication ici http://msdn.microsoft.com/zh-TW/library/ie/dn302360(v=vs.85).
On peut dire que la fonction de dessin principale ci-dessus est terminée, mais la nôtre est active, nous devons donc simuler la fréquence à laquelle l'environnement client est dessiné. Le code principal est le suivant :
.Animation :
function tick() { Update(); OnDraw(); setTimeout(function () { tick() }, 15); } function OnDraw() { //fbo rander CUBE_MAP RenderFBO(); //element rander gl.viewport(0, 0, gl.viewportWidth, gl.viewportHeight); gl.clear(gl.COLOR_BUFFER_BIT | gl.DEPTH_BUFFER_BIT); mat4.perspective(pMatrix, 45, gl.viewportWidth / gl.viewportHeight, 0.1, 200.0); mat4.lookAt(vMatrix, eyePos, eyeLookat, vec3.fromValues(0.0, 1.0, 0.0)); RenderCube(); RenderSphere(); } var lastTime = new Date().getTime(); function Update() { var timeNow = new Date().getTime(); if (lastTime != 0) { var elapsed = timeNow - lastTime; //3000控制人眼的旋转速度。8控制人眼的远近 eyePos[0] = Math.cos(elapsed / 3000) * 8; eyePos[2] = Math.sin(elapsed / 2000) * 8; spherePos[0] = Math.cos(elapsed / 4000) * 3; spherePos[2] = Math.cos(elapsed / 4000) * 3; } }
Dans ce qui précède, les fonctions Update et Draw sont appelées toutes les 15 millisecondes, où Update est utilisé pour mettre à jour la position de l'œil et de la sphère, et Draw est utilisé pour peindre.
Cliquez ici pour l'exemple de code completTéléchargez depuis ce site.
Les lecteurs intéressés par plus de contenu lié aux effets spéciaux JS peuvent consulter les sujets spéciaux de ce site : "Résumé de l'utilisation de l'animation et des effets spéciaux jQuery" et "Résumé des classiques courants effets spéciaux de jQuery"
J'espère que cet article sera utile à tout le monde dans la programmation JavaScript.