1.urlopen()方法
urllib.urlopen(url[, data[, proxies]]) :创建一个表示远程url的类文件对象,然后像本地文件一样操作这个类文件对象来获取远程数据。
参数url表示远程数据的路径,一般是网址;
参数data表示以post方式提交到url的数据(玩过web的人应该知道提交数据的两种方式:post与get。如果你不清楚,也不必太在意,一般情况下很少用到这个参数);
参数proxies用于设置代理。
urlopen返回 一个类文件对象,它提供了如下方法:
read() , readline() , readlines() , fileno() , close() :这些方法的使用方式与文件对象完全一样;
info():返回一个httplib.HTTPMessage 对象,表示远程服务器返回的头信息
getcode():返回Http状态码。如果是http请求,200表示请求成功完成;404表示网址未找到;
geturl():返回请求的url;
代码示例:
import urllib
url = "http://www.baidu.com/"
#urlopen()
sock = urllib.urlopen(url)
htmlCode = sock.read()
sock.close
fp = open("e:/1.html","wb")
fp.write(htmlCode)
fp.close
#urlretrieve()
urllib.urlretrieve(url, 'e:/2.html')
2.urlretrieve方法
直接将远程数据下载到本地。
urllib.urlretrieve(url[, filename[, reporthook[, data]]])
参数说明:
url:外部或者本地url
filename:指定了保存到本地的路径(如果未指定该参数,urllib会生成一个临时文件来保存数据);
reporthook:是一个回调函数,当连接上服务器、以及相应的数据块传输完毕的时候会触发该回调。我们可以利用这个回调函数来显示当前的下载进度。
data:指post到服务器的数据。该方法返回一个包含两个元素的元组(filename, headers),filename表示保存到本地的路径,header表示服务器的响应头。
下面通过例子来演示一下这个方法的使用,这个例子将新浪首页的html抓取到本地,保存在D:/sina.html文件中,同时显示下载的进度。
import urllib
def callbackfunc(blocknum, blocksize, totalsize):
'''回调函数
@blocknum: 已经下载的数据块
@blocksize: 数据块的大小
@totalsize: 远程文件的大小
'''
percent = 100.0 * blocknum * blocksize / totalsize
if percent > 100:
percent = 100
print "%.2f%%"% percent
url = 'http://www.sina.com.cn'
local = 'd:\\sina.html'
urllib.urlretrieve(url, local, callbackfunc)

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Python et C ont des différences significatives dans la gestion et le contrôle de la mémoire. 1. Python utilise la gestion automatique de la mémoire, basée sur le comptage des références et la collecte des ordures, simplifiant le travail des programmeurs. 2.C nécessite une gestion manuelle de la mémoire, en fournissant plus de contrôle mais en augmentant la complexité et le risque d'erreur. Quelle langue choisir doit être basée sur les exigences du projet et la pile de technologie d'équipe.

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Que ce soit pour choisir Python ou C dépend des exigences du projet: 1) Python convient au développement rapide, à la science des données et aux scripts en raison de sa syntaxe concise et de ses bibliothèques riches; 2) C convient aux scénarios qui nécessitent des performances élevées et un contrôle sous-jacent, tels que la programmation système et le développement de jeux, en raison de sa compilation et de sa gestion de la mémoire manuelle.

Python est largement utilisé dans la science des données et l'apprentissage automatique, s'appuyant principalement sur sa simplicité et son puissant écosystème de bibliothèque. 1) Pandas est utilisé pour le traitement et l'analyse des données, 2) Numpy fournit des calculs numériques efficaces, et 3) Scikit-Learn est utilisé pour la construction et l'optimisation du modèle d'apprentissage automatique, ces bibliothèques font de Python un outil idéal pour la science des données et l'apprentissage automatique.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

Listes Sec
SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

PhpStorm version Mac
Le dernier (2018.2.1) outil de développement intégré PHP professionnel

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire

ZendStudio 13.5.1 Mac
Puissant environnement de développement intégré PHP