在这章中引入了数据结构的概念。数据结构是通过某种方式组织在一起的数据元素的集合。在python中,最基本的数据结构就是序列。序列中的每个元素被分配一个序号,即元素的位置,也被称为索引。注意:第一个索引是0。
1.序列概览
python有6种内建的序列:列表,元组,字符串,Unicode字符串,buffer对象和xrange对象。
这里重点介绍列表和元组。列表和元组主要区别在于,列表可以修改,元组不可修改。一般来说,在几乎所有情况下列表都可以代替元组。
在需要操作一组数值的时候,序列很好用:
Edward = ["Gumby",42]
同时,序列可以包含其他的序列。如:
Edward = ["Gumby",42]
John = ["Smith",50]
database = [Edward,John]
2. 通用序列操作
所有序列类型都可以进行某些特点的操作,包括:索引,分片,加,乘以及检查某个元素是否属于序列的成员(成员资格)。除此之外,python还有计算序列长度,找出最大元素和最小元素的内建函数。
2.1 索引
序列中的所有元素都是有编号的--从0开始递增。这些元素可以通过编号分别访问:
>>>greeting = "hello"
>>>greeting[0]
'H'
使用负数索引的话,python会从右边,也就是从最后一个元素开始计数,最后一个元素的位置编号是-1!
>>> greeting[-1]
'g'
2.2 分片
分片可以访问一定范围内的元素,通过冒号相隔的2个索引来实现。分片对于提取序列的一部分是很有用的,第一个索引是提取部分的第一个元素编号,最后的索引是分片之后剩下部分的第一个元素编号。
>>> number = [1,2,3,4,5,6,7,8,9,10]
>>> number[3:6]
[4,5,6]
>>> number[0:1]
[1]
2.2.1 优雅的捷径
需要访问最后3个元素,可以这样显式操作:
>>> number[7:10]
[8,9,10]
这里索引10指向的第11个元素不存在,却是在最后一个元素之后。
如果需要从列表结尾开始计数,就是说如果分片所得部分包括序列结尾的元素,那么只需置空最后一个索引:
>>> number[-3:]
[8,9,10]
这种方法适用于序列开始的元素或者显示整个序列:
>>> number[:3]
[1,2,3]
>>> number[:]
[1,2,3,4,5,6,7,8,9,10]
2.2.2 更大的步长
进行分片的时候,分片的开始和结束都需要进行指定,另一个参数-步长,通常是隐式设置的。默认的步长是1。如果显示设置步长为比1大的数,那么会跳过某些元素。
>>> number[0:10:2]
[1,3,5,7,9]
>>> number[3:6:3]
[4]
步长不能为0,但是可以是负数,即从右到左提取元素:
>>> number[10:0:-2]
[10,8,6,4,2]
>>> number[0:10:-2]
[]
上面第二个式子是错误的,使用一个负数作为步长时,必须让开始点大于结束点。
2.3 序列相加
通过使用加号可以进行序列的连接操作:
>>> [1,2,3] + [4,5,6]
[1,2,3,4,5,6]
>>>'hello, ' + 'world'
'hello, world'
>>>[1,2,3] + 'hello'
TypeError:can only concatenate list(not 'string') to list
如上面第三个例子所示,列表和字符串是无法连接到一块的,尽管它们都是序列,但是只有2种相同类型的序列才能进行连接操作。
2.4 乘法
用数字x乘以一个序列会生成新的序列,在新的序列中,原来的序列被重复x次:
[code]
>>> 'python' *5
'pythonpythonpythonpythonpython'
>>> [42] * 5
[42,42,42,42,42]
None,空列表和初始化
空列表可以通过2个中括号进行表示([]),但是如果想创建一个占用十个元素空间,却不包括任何有用内容的列表,我们就需要一个值来代表空值,可以这样做:
>>> sequence = [None] * 10
>>> sequence
[None,None,None,None,None,None,None,None,None,None]
2.5 成员资格
为了检查一个值是否在序列中,可以使用in运算符。它检查某个条件是否为真,然后返回相应的值(True或False)
>>> p = 'write'
>>> 'w' in p
True
>>> user =["a","b","c"]
>>> raw_input('Enter:') in user
Enter:a
True
2.6 长度,最大最小值
>>> numbers = [10,20,30]
>>> len(numbers)
>>> max(numbers)
>>> min(numbers)
>>> max(1,99)
>>> min(1,99)
上面最后2个例子中,max函数和min函数的参数并不是序列,而是以多个数字直接作为参数。
3.列表:python的“苦力”
3.1 list函数
因为字符串不能像列表一样被修改,所以有时候根据字符串创建列表会很有用。ps:list函数适用于所有类型的列表,不只是字符串。
>>> list('hello')
['h','e','l','l','o']
提示:可以用下面的表达式将一个由字符组成的列表转换为字符串:
>>> strs = ‘ '.jion(list)
>>> strs
"h e l l o"
3.2 基本列表操作
方法是一个与某些对象有紧密联系的函数,对象可能是列表,数字,也可能是字符串或者其他类型的对象。列表提供了几个方法,用于检测或者修改其中的内容。
3.2.1 append
append方法用于在列表末尾追加新的对象:
>>> lst = [1,2,3]
>>> lst.append(4)
>>> lst
[1,2,3,4]
注意:append方法不是简单地返回一个修改过的新列表,而是直接修改原来的列表。
3.2.2 count
count方法统计某个元素在列表中出现的次数:
>>> x =[[1,2],1,1,[1,2,[1,2]]]
>>> x.count(1)
2
3.2.3 extend
extend方法可以在列表的末尾一次性追加另一个序列中的多个值。
注意:extend方法和连接操作(+)最主要的区别在于:extend方法修改了被扩展的序列,而连接操作会返回一个全新的列表。
3.2.4 index
index方法用于从列表中找出某个值第一次匹配项的索引位置:
>>> knights = ['we','are','the','knights']
>>> knights.index('the')
2
>>> knights.index("hi")
ValueError:list.index(x):x not in list
当匹配项没有被找到时,会引发一个异常。
3.2.5 insert
insert方法用于将对象插入到列表中:
>>> numbers = [1,2,3,6]
>>> numbers = insert(3,5)
>>> numbers
[1,2,3,5,6]
>>> numbers[3:3] = [4]
>>> numbers
[1,2,3,4,5,6]
上面最后一个例子中通过分片赋值实现插入,但是可读性不如insert。
3.2.6 pop
pop方法会移除列表中的一个元素,并且放回该元素的值,它是唯一一个既能修改列表又能返回元素值的列表方法:
>>> x = [1,2,3]
>>> x.pop()
3
>>> x
[1,2]
3.2.7 remove
remove方法用于移除列表中某个值的第一个匹配项:
>>> x = ['to','be','to']
>>> x.remove('to')
>>> x
['be','to']
>>> x.remove('kkk')
ValueError:list.remove(x):x not in list
可以看到只有第一次出现的值被移除了,而不在列表中的值是不会移除的。
3.2.8 reverse
reverse方法将列表中的元素反向存放:
>>> x = [1,2,3]
>>> x.reverse()
>>> x
[3,2,1]
3.2.9 sort
sort方法用于在原位置对列表进行排序,意味着改变原来的列表,而不是简单地返回一个已排序的列表副本。
如果想要得到一个排序而不改变原来的数值,那就需要先赋值再排序:
>>> x = [4,2,7,1]
>>> y = x[:]
>>> y.sort()
>>> x
[4,2,7,1]
>>>y
[1,2,4,7]
注意:上面的例子中赋值使用的是y=x[:],分片是一种很有效率的复制整个列表的方法。如果简单地把x赋值给y是没有的(y=x),因为这样做就让x和y指向同一个列表了。
另一种获取已排序列表副本的方法是使用sorted函数:
>>> x = [4,5,3,7,2]
>>> y = sorted(x)
>>> x
[4,5,3,7,2]
>>> y
[2,3,4,5,7]
3.2.10 高级排序
如果希望元素能够按照特定的方式进行排序,那么可以通过compare(x,y)的形式自定义比较函数。内建cmp函数提供了比较函数的默认实现方式:
>>> cmp(1,2)
-1
>>> cmp(2,1)
>>> cmp(1,1)
>>> numbers = [5,3,9,7]
>>> numbers.sort(cmp)
>>> numbers
[3,5,7,9]
sort方法有另外2个可选参数-key和reverse。要使用它们,那就要通过名字来指定。
>>> x = ['a','abc','ab']
>>> x.sort(key=len)
>>> x
['a','ab','abc']
>>> y = [2,4,1,5]
>>> y.sort(reverse)
>>> y
[5,4,2,1]
4.元组:不可变序列
创建元组的语法很简单:如果你用逗号分隔了一些值,那么你就自动创建了元组。
>>>1,2,3
(1,2,3)
>>>(1,2,3)
(1,2,3)
>>>()
()
>>>42,
(42,)
如上面最后一个例子,如果要实现一个包括一个值的元组,必须在数值后面加一个逗号。
4.1 tuple函数
tuple将一个序列作为参数并把它转换为元组,如果参数是元组,那么该参数就会被原样返回:
>>> tuple([1,2,3])
(1,2,3)
>>> tuple('abc')
('a','b','c')
>>> tuple((1,2,3))
(1,2,3)
4.2 基本元组操作
元组其实并不复杂,除了创建元组和访问元组元素之外,也没有太多其他操作:
>>>x = 1,2,3
>>>x[1]
2
>>> x[0:2]
(1,2)
元组的分片还是元组,就像列表的分片还是列表一样。
4.3 那么,意义何在
元组是不可替代的:
(1)元组可以在映射中当作键使用,而列表不行。
(2)元组作为很多内建函数和方法的返回值存在。

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Python et C ont des différences significatives dans la gestion et le contrôle de la mémoire. 1. Python utilise la gestion automatique de la mémoire, basée sur le comptage des références et la collecte des ordures, simplifiant le travail des programmeurs. 2.C nécessite une gestion manuelle de la mémoire, en fournissant plus de contrôle mais en augmentant la complexité et le risque d'erreur. Quelle langue choisir doit être basée sur les exigences du projet et la pile de technologie d'équipe.

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Que ce soit pour choisir Python ou C dépend des exigences du projet: 1) Python convient au développement rapide, à la science des données et aux scripts en raison de sa syntaxe concise et de ses bibliothèques riches; 2) C convient aux scénarios qui nécessitent des performances élevées et un contrôle sous-jacent, tels que la programmation système et le développement de jeux, en raison de sa compilation et de sa gestion de la mémoire manuelle.

Python est largement utilisé dans la science des données et l'apprentissage automatique, s'appuyant principalement sur sa simplicité et son puissant écosystème de bibliothèque. 1) Pandas est utilisé pour le traitement et l'analyse des données, 2) Numpy fournit des calculs numériques efficaces, et 3) Scikit-Learn est utilisé pour la construction et l'optimisation du modèle d'apprentissage automatique, ces bibliothèques font de Python un outil idéal pour la science des données et l'apprentissage automatique.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

Listes Sec
SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

PhpStorm version Mac
Le dernier (2018.2.1) outil de développement intégré PHP professionnel

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire

ZendStudio 13.5.1 Mac
Puissant environnement de développement intégré PHP