


Comment utiliser les Pandas pour implémenter les statistiques de colonne à colonne des données?
Implémentez efficacement les données de la colonne aux statistiques avec Pandas
Dans l'analyse des données, une réorganisation flexible et une analyse statistique des données sont souvent nécessaires. Par exemple, convertissez un ensemble de données contenant des dates et des types en un tableau statistique de différents types de comptes par jour. Cet article montrera comment utiliser la bibliothèque Pandas pour le faire efficacement.
Supposons que nous ayons une trame de données (DataFrame) contenant deux colonnes de «date» (date) et «type» (type), et l'exemple de données est le suivant:
<code>date type 2024-01-01 1 2024-01-01 2 2024-01-01 1 2024-01-02 3 2024-01-02 2 2024-01-02 3 2024-01-02 1 2024-01-02 1 2024-01-03 1 2024-01-03 4 2024-01-03 2 2024-01-03 5 ...</code>
L'objectif est de convertir les données au format suivant, montrant le nombre de chaque type chaque jour:
<code>date type1 type2 type3 type4 type5 2024-01-01 2 1 0 0 0 2024-01-02 2 1 2 0 0 2024-01-03 1 1 0 1 1 ...</code>
Nous pouvons utiliser les fonctions pd.get_dummies()
et groupby()
pour y parvenir. Voici le code Python:
Importer des pandas en tant que PD # Exemples de données = { 'date': ['2024-01-01', '2024-01-01', '2024-01-01', '2024-01-02', '2024-01-02', '2024-01-02', '2024-01-02', '2024-01-02', '2024-01-02', '2024-01-03', '2024-01-03', '2024-01-03'], «Type»: [1, 2, 1, 3, 2, 3, 1, 1, 1, 4, 2, 5] } df = pd.dataframe (données) # Utilisez get_dummies () pour un codage à un hot df_encoded = pd.get_dummies (df, colonnes = ['type'], prefix = 'type') # Utiliser groupBy () et sum () pour les statistiques de groupe Résultat = df_encoded.groupby ('date'). Sum () # Imprimer le résultat imprimer (df_encoded) imprimer ("-" * 60) Imprimer (résultat)
Le code utilise d'abord pd.get_dummies()
pour convertir la colonne 'Type' en une variable factice, puis utilise groupby('date').sum()
pour regrouper les dates et résumer chaque type pour enfin obtenir le tableau des statistiques cibles.
Le résultat de sortie est similaire à:
<code> date type_1 type_2 type_3 type_4 type_5 0 2024-01-01 1 0 0 0 0 1 2024-01-01 0 1 0 0 0 2 2024-01-01 1 0 0 0 0 3 2024-01-02 0 0 1 0 0 4 2024-01-02 0 1 0 0 0 5 2024-01-02 0 0 1 0 0 6 2024-01-02 1 0 0 0 0 7 2024-01-02 1 0 0 0 0 8 2024-01-03 1 0 0 0 0 9 2024-01-03 0 0 0 1 0 10 2024-01-03 0 1 0 0 0 11 2024-01-03 0 0 0 0 1 ------------------------------------------------------------ type_1 type_2 type_3 type_4 type_5 date 2024-01-01 2 1 0 0 0 2024-01-02 2 1 2 0 0 2024-01-03 1 1 0 1 1</code>
Grâce à ce code concis, nous pouvons facilement compléter les statistiques de conversion des colonnes de données Pandas pour améliorer l'efficacité de l'analyse des données.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.

Les applications du monde réel de Python incluent l'analyse des données, le développement Web, l'intelligence artificielle et l'automatisation. 1) Dans l'analyse des données, Python utilise des pandas et du matplotlib pour traiter et visualiser les données. 2) Dans le développement Web, les cadres Django et Flask simplifient la création d'applications Web. 3) Dans le domaine de l'intelligence artificielle, Tensorflow et Pytorch sont utilisés pour construire et former des modèles. 4) En termes d'automatisation, les scripts Python peuvent être utilisés pour des tâches telles que la copie de fichiers.

Python est largement utilisé dans les domaines de la science des données, du développement Web et des scripts d'automatisation. 1) Dans la science des données, Python simplifie le traitement et l'analyse des données à travers des bibliothèques telles que Numpy et Pandas. 2) Dans le développement Web, les cadres Django et Flask permettent aux développeurs de créer rapidement des applications. 3) Dans les scripts automatisés, la simplicité de Python et la bibliothèque standard le rendent idéal.

La flexibilité de Python se reflète dans les systèmes de prise en charge et de type dynamique multi-paradigmes, tandis que la facilité d'utilisation provient d'une syntaxe simple et d'une bibliothèque standard riche. 1. Flexibilité: prend en charge la programmation orientée objet, fonctionnelle et procédurale, et les systèmes de type dynamique améliorent l'efficacité de développement. 2. Facilité d'utilisation: La grammaire est proche du langage naturel, la bibliothèque standard couvre un large éventail de fonctions et simplifie le processus de développement.

Python est très favorisé pour sa simplicité et son pouvoir, adaptés à tous les besoins des débutants aux développeurs avancés. Sa polyvalence se reflète dans: 1) Facile à apprendre et à utiliser, syntaxe simple; 2) Bibliothèques et cadres riches, tels que Numpy, Pandas, etc.; 3) Support multiplateforme, qui peut être exécuté sur une variété de systèmes d'exploitation; 4) Convient aux tâches de script et d'automatisation pour améliorer l'efficacité du travail.

Oui, apprenez Python en deux heures par jour. 1. Élaborer un plan d'étude raisonnable, 2. Sélectionnez les bonnes ressources d'apprentissage, 3. Consolider les connaissances apprises par la pratique. Ces étapes peuvent vous aider à maîtriser Python en peu de temps.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

PhpStorm version Mac
Le dernier (2018.2.1) outil de développement intégré PHP professionnel

Adaptateur de serveur SAP NetWeaver pour Eclipse
Intégrez Eclipse au serveur d'applications SAP NetWeaver.

SublimeText3 version anglaise
Recommandé : version Win, prend en charge les invites de code !

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire

Dreamweaver Mac
Outils de développement Web visuel