recherche
Maisondéveloppement back-endTutoriel PythonComment installer des packages de dépendance dans le fichier pyproject.toml à l'aide de PIP?

Comment installer des packages de dépendance dans le fichier pyproject.toml à l'aide de PIP?

Installez facilement les dépendances de fichiers pyproject.toml à l'aide de PIP

De nombreux projets Python se sont déplacés vers l'utilisation des dépendances de gestion des fichiers pyproject.toml , en remplacement des requirements.txt traditionnelles.txt. Cet article décrit comment installer les packages de dépendance spécifiés dans pyproject.toml à l'aide de PIP sans utiliser d'outils tels que la poésie ou le pipenv.

Supposons que vous ayez cloné le projet localement et que le répertoire de travail actuel est situé dans le répertoire racine du projet. Vous pouvez installer toutes les dépendances en utilisant la commande concise suivante:

 pip install -e.

-e . L'option installe le répertoire actuel en tant que package modifiable. Cela signifie que vous pouvez modifier le code du projet sans réinstaller l'intégralité du package, ce qui est parfait pour le développement et les tests.

Alors que certains développeurs recommandent d'utiliser de la poésie pour gérer les dépendances pyproject.toml , si vous êtes plus habitué à utiliser PIP ou PIPENV, cette approche fournit une alternative pratique à l'installation de dépendances de projet efficacement sans s'appuyer sur d'autres outils.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Quel module est couramment utilisé pour créer des tableaux dans Python?Quel module est couramment utilisé pour créer des tableaux dans Python?May 05, 2025 am 12:02 AM

ThemostComMonlyUsedModuleforCreatingArraysInpyThonisNumpy.1) numpyprovidesefficientToolsforArrayoperations, IdealFornumericalData.2) ArraysCanBecatedUsingNp.Array () For1dand2Dstructures.3)

Comment ajoutez-vous les éléments à une liste Python?Comment ajoutez-vous les éléments à une liste Python?May 04, 2025 am 12:17 AM

ToAppendementStoapyThonList, usetheAppend () methodforsingleelements, prolong () forulTipleElements, andInsert () forSpecificPositifs.1) useAppend () foraddingOneelementAtheend.2) useExtend () ToaddMultipleElementSEFFIENTLY.3)

Comment créez-vous une liste Python? Donner un exemple.Comment créez-vous une liste Python? Donner un exemple.May 04, 2025 am 12:16 AM

TOCREATEAPYTHONLIST, USSquareBracket [] et SEPARateItemswithcommas.1) listsaredynynamicandcanholdmixeddatatypes.2) useAppend (), retire (), andslitingformMipulation.3) Listcomprehensationafficientforcereglists.4)

Discutez des cas d'utilisation du monde réel où le stockage et le traitement efficaces des données numériques sont essentiels.Discutez des cas d'utilisation du monde réel où le stockage et le traitement efficaces des données numériques sont essentiels.May 04, 2025 am 12:11 AM

Dans les domaines de la finance, de la recherche scientifique, des soins médicaux et de l'IA, il est crucial de stocker et de traiter efficacement les données numériques. 1) En finance, l'utilisation de fichiers mappés de mémoire et de bibliothèques Numpy peut considérablement améliorer la vitesse de traitement des données. 2) Dans le domaine de la recherche scientifique, les fichiers HDF5 sont optimisés pour le stockage et la récupération des données. 3) Dans les soins médicaux, les technologies d'optimisation de la base de données telles que l'indexation et le partitionnement améliorent les performances des requêtes de données. 4) Dans l'IA, la fragmentation des données et la formation distribuée accélèrent la formation du modèle. Les performances et l'évolutivité du système peuvent être considérablement améliorées en choisissant les bons outils et technologies et en pesant les compromis entre les vitesses de stockage et de traitement.

Comment créez-vous un tableau Python? Donner un exemple.Comment créez-vous un tableau Python? Donner un exemple.May 04, 2025 am 12:10 AM

PythonarRaySaCreatEdusingtheArrayModule, notbuilt-inlikelistes.1) importtheaRaymodule.2) spécifiertheTypecode, par exemple, 'I'ForIntegers.3) initializewithvalues.

Quelles sont les alternatives à l'utilisation d'une ligne Shebang pour spécifier l'interprète Python?Quelles sont les alternatives à l'utilisation d'une ligne Shebang pour spécifier l'interprète Python?May 04, 2025 am 12:07 AM

En plus de la ligne Shebang, il existe de nombreuses façons de spécifier un interprète Python: 1. Utilisez les commandes Python directement à partir de la ligne de commande; 2. Utilisez des fichiers batch ou des scripts shell; 3. Utilisez des outils de construction tels que Make ou Cmake; 4. Utilisez des coureurs de tâches tels que Invoke. Chaque méthode présente ses avantages et ses inconvénients, et il est important de choisir la méthode qui répond aux besoins du projet.

Comment le choix entre les listes et les tableaux a-t-il un impact sur les performances globales d'une application Python traitant de grands ensembles de données?Comment le choix entre les listes et les tableaux a-t-il un impact sur les performances globales d'une application Python traitant de grands ensembles de données?May 03, 2025 am 12:11 AM

ForhandlingLargedatasetSInpython, UsenumpyArraysforbetterperformance.1) NumpyArraysAremeMory-EfficientAndFasterFornumericalOperations.2) EvitUnneceSsaryTypeConversions.3) Le effet de levier

Expliquez comment la mémoire est allouée aux listes par rapport aux tableaux dans Python.Expliquez comment la mémoire est allouée aux listes par rapport aux tableaux dans Python.May 03, 2025 am 12:10 AM

Inpython, listSusedynamicMemoryallocation withover-allocation, whileLumpyArraySallocateFixedMemory.1) listsallocatemoreMoryThreededEdededInitialement, redimensipwenessary.2) NumpyArraySallocateExactMemoryForElements, offrantwectable usinessflexibilité.

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Dreamweaver Mac

Dreamweaver Mac

Outils de développement Web visuel

Navigateur d'examen sécurisé

Navigateur d'examen sécurisé

Safe Exam Browser est un environnement de navigation sécurisé permettant de passer des examens en ligne en toute sécurité. Ce logiciel transforme n'importe quel ordinateur en poste de travail sécurisé. Il contrôle l'accès à n'importe quel utilitaire et empêche les étudiants d'utiliser des ressources non autorisées.

SublimeText3 Linux nouvelle version

SublimeText3 Linux nouvelle version

Dernière version de SublimeText3 Linux

Adaptateur de serveur SAP NetWeaver pour Eclipse

Adaptateur de serveur SAP NetWeaver pour Eclipse

Intégrez Eclipse au serveur d'applications SAP NetWeaver.

Version Mac de WebStorm

Version Mac de WebStorm

Outils de développement JavaScript utiles