CenterCrop dans PyTorch

Susan Sarandon
Susan Sarandonoriginal
2025-01-20 12:15:13389parcourir

Achetez-moi un café☕

*Mémos :

  • Mon message explique OxfordIIITPet().

CenterCrop() peut recadrer zéro ou plusieurs images, en les centrant comme indiqué ci-dessous :

*Mémos :

  • Le 1er argument pour l'initialisation est size(Required-Type:int, float ou tuple/list(int ou float) ou size()) : *Mémos :
    • C'est [hauteur, largeur].
    • Il doit être 0 <= x.
    • Un tuple/liste doit être le 1D avec 1 ou 2 éléments.
    • Une seule valeur (int, float ou tuple/list(int ou float) signifie [size, size].
  • Le 1er argument est img(Required-Type:PIL Image ou tensor(int, float, complexe ou bool)) : *Mémos :
    • Un tenseur doit être le 2D ou plus D de zéro ou plusieurs éléments.
    • N'utilisez pas img=.
  • Il est recommandé d'utiliser la v2 selon la V1 ou la V2 ? Lequel dois-je utiliser ?.
from torchvision.datasets import OxfordIIITPet
from torchvision.transforms.v2 import CenterCrop

centercrop = CenterCrop(size=100)

centercrop
# CenterCrop(size=(100, 100))

centercrop.size
# (100, 100)

origin_data = OxfordIIITPet(
    root="data",
    transform=None
)

p600_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=600)
    # transform=CenterCrop(size=[600])
    # transform=CenterCrop(size=[600, 600])
)

p400_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=400)
)

p200_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=200)
)

p100_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=100)
)

p50_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=50)
)

p10_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=10)
)

p200p300_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=[200, 300])
)

p300p200_data = OxfordIIITPet(
    root="data",
    transform=CenterCrop(size=[300, 200])
)

import matplotlib.pyplot as plt

def show_images1(data, main_title=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        plt.imshow(X=im)
    plt.tight_layout()
    plt.show()

show_images1(data=origin_data, main_title="origin_data")
show_images1(data=p600_data, main_title="p600_data")
show_images1(data=p400_data, main_title="p400_data")
show_images1(data=p200_data, main_title="p200_data")
show_images1(data=p100_data, main_title="p100_data")
show_images1(data=p50_data, main_title="p50_data")
show_images1(data=p10_data, main_title="p10_data")
print()
show_images1(data=p200p300_data, main_title="p200p300_data")
show_images1(data=p300p200_data, main_title="p300p200_data")

# ↓ ↓ ↓ ↓ ↓ ↓ The code below is identical to the code above. ↓ ↓ ↓ ↓ ↓ ↓
def show_images2(data, main_title=None, s=None):
    plt.figure(figsize=(10, 5))
    plt.suptitle(t=main_title, y=0.8, fontsize=14)
    for i, (im, _) in zip(range(1, 6), data):
        plt.subplot(1, 5, i)
        if not s:
            s = [im.size[1], im.size[0]]
        cc = CenterCrop(size=s) # Here
        plt.imshow(X=cc(im)) # Here
    plt.tight_layout()
    plt.show()

show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="p600_data", s=600)
show_images2(data=origin_data, main_title="p400_data", s=400)
show_images2(data=origin_data, main_title="p200_data", s=200)
show_images2(data=origin_data, main_title="p100_data", s=100)
show_images2(data=origin_data, main_title="p50_data", s=50)
show_images2(data=origin_data, main_title="p10_data", s=10)
print()
show_images2(data=origin_data, main_title="origin_data")
show_images2(data=origin_data, main_title="p200p300_data", s=[200, 300])
show_images2(data=origin_data, main_title="p300p200_data", s=[300, 200])

Image description

Image description

Image description

Image description

Image description

Image description

Image description


Image description

Image description

Image description

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn