recherche
Maisondéveloppement back-endTutoriel PythonPython : refactorisation vers des modèles

Python: Refactoring to Patterns

Photo de Patric Ho

Ce guide concis mappe les odeurs du code Python aux solutions de modèles de conception correspondantes.

class CodeSmellSolutions:
    DUPLICATED_CODE = [
        "form_template_method",
        "introduce_polymorphic_creation_with_factory_method",
        "chain_constructors",
        "replace_one__many_distinctions_with_composite",
        "extract_composite",
        "unify_interfaces_with_adapter",
        "introduce_null_object",
    ]
    LONG_METHOD = [
        "compose_method",
        "move_accumulation_to_collecting_parameter",
        "replace_conditional_dispatcher_with_command",
        "move_accumulation_to_visitor",
        "replace_conditional_logic_with_strategy",
    ]
    CONDITIONAL_COMPLEXITY = [  # Complex conditional logic
        "replace_conditional_logic_with_strategy",
        "move_emblishment_to_decorator",
        "replace_state_altering_conditionals_with_state",
        "introduce_null_object",
    ]
    PRIMITIVE_OBSESSION = [
        "replace_type_code_with_class",
        "replace_state_altering_conditionals_with_state",
        "replace_conditional_logic_with_strategy",
        "replace_implict_tree_with_composite",
        "replace_implicit_language_with_interpreter",
        "move_emblishment_to_decorator",
        "encapsulate_composite_with_builder",
    ]
    INDECENT_EXPOSURE = [  # Lack of information hiding
        "encapsulate_classes_with_factory"
    ]
    SOLUTION_SPRAWL = [  # Scattered logic/responsibility
        "move_creation_knowledge_to_factory"
    ]
    ALTERNATIVE_CLASSES_WITH_DIFFERENT_INTERFACES = [  # Similar classes, different interfaces
        "unify_interfaces_with_adapter"
    ]
    LAZY_CLASS = [  # Insufficient functionality
        "inline_singleton"
    ]
    LARGE_CLASS = [
        "replace_conditional_dispatcher_with_command",
        "replace_state_altering_conditionals_with_state",
        "replace_implict_tree_with_composite",
    ]
    SWITCH_STATEMENTS = [  # Complex switch statements
        "replace_conditional_dispatcher_with_command",
        "move_accumulation_to_visitor",
    ]
    COMBINATION_EXPLOSION = [  # Similar code for varying data
        "replace_implicit_language_with_interpreter"
    ]
    ODDBALL_SOLUTIONS = [  # Multiple solutions for same problem
        "unify_interfaces_with_adapter"
    ]

Exemples de refactoring en Python

Ce projet traduit des exemples de refactoring de Refactoring to Patterns (Joshua Kerievsky) en Python. Chaque exemple montre du code original et refactorisé, mettant en évidence les améliorations. Le processus de refactoring impliquait l'interprétation des diagrammes UML et l'adaptation du code Java aux nuances de Python (gestion des importations et des interfaces cycliques).

Exemple : Méthode Compose

La refactorisation « Compose Method » simplifie le code complexe en extrayant des méthodes plus petites et plus significatives.

# Original (complex) code
def add(element):
    readonly = False
    size = 0
    elements = []
    if not readonly:
        new_size = size + 1
        if new_size > len(elements):
            new_elements = []
            for i in range(size):
                new_elements[i] = elements[i]  # Potential IndexError
            elements = new_elements
        size += 1
        elements[size] = element # Potential IndexError

# Refactored (simplified) code
def is_at_capacity(new_size, elements):
    return new_size > len(elements)

def grow_array(size, elements):
    new_elements = [elements[i] for i in range(size)] # List comprehension for clarity
    return new_elements

def add_element(elements, element, size):
    elements.append(element) # More Pythonic approach
    return len(elements) -1

def add_refactored(element):
    readonly = False
    if readonly:
        return
    size = len(elements)
    new_size = size + 1
    if is_at_capacity(new_size, elements):
        elements = grow_array(size, elements)
    size = add_element(elements, element, size)

Exemple : Polymorphisme (automatisation des tests)

Cet exemple démontre le polymorphisme dans l'automatisation des tests, en faisant abstraction de la configuration des tests pour la réutilisabilité.

# Original code (duplicate setup)
class TestCase:
    pass

class DOMBuilder:
    def __init__(self, orders): pass
    def calc(self): return 42

class XMLBuilder:
    def __init__(self, orders): pass
    def calc(self): return 42

class DOMTest(TestCase):
    def run_dom_test(self):
        expected = 42
        builder = DOMBuilder("orders")
        assert builder.calc() == expected

class XMLTest(TestCase):
    def run_xml_test(self):
        expected = 42
        builder = XMLBuilder("orders")
        assert builder.calc() == expected

# Refactored code (polymorphic setup)
class OutputBuilder:
    def calc(self): raise NotImplementedError

class DOMBuilderRefac(OutputBuilder):
    def calc(self): return 42

class XMLBuilderRefac(OutputBuilder):
    def calc(self): return 42

class TestCaseRefac:
    def create_builder(self): raise NotImplementedError
    def run_test(self):
        expected = 42
        builder = self.create_builder()
        assert builder.calc() == expected

class DOMTestRefac(TestCaseRefac):
    def create_builder(self): return DOMBuilderRefac()

class XMLTestRefac(TestCaseRefac):
    def create_builder(self): return XMLBuilderRefac()

Exemple : modèle de visiteur

Le modèle Visiteur dissocie les classes de leurs méthodes.

# Original code (conditional logic in TextExtractor)
class Node: pass
class LinkTag(Node): pass
class Tag(Node): pass
class StringNode(Node): pass

class TextExtractor:
    def extract_text(self, nodes):
        result = []
        for node in nodes:
            if isinstance(node, StringNode): result.append("string")
            elif isinstance(node, LinkTag): result.append("linktag")
            elif isinstance(node, Tag): result.append("tag")
            else: result.append("other")
        return result

# Refactored code (using Visitor)
class NodeVisitor:
    def visit_link_tag(self, node): return "linktag"
    def visit_tag(self, node): return "tag"
    def visit_string_node(self, node): return "string"

class Node:
    def accept(self, visitor): pass

class LinkTagRefac(Node):
    def accept(self, visitor): return visitor.visit_link_tag(self)

class TagRefac(Node):
    def accept(self, visitor): return visitor.visit_tag(self)

class StringNodeRefac(Node):
    def accept(self, visitor): return visitor.visit_string_node(self)

class TextExtractorVisitor(NodeVisitor):
    def extract_text(self, nodes):
        result = [node.accept(self) for node in nodes]
        return result

Conclusion

Cette approche pratique et pratique de l'apprentissage des modèles de conception grâce à la refactorisation améliore considérablement la compréhension. Les défis rencontrés lors de la traduction du code solidifient les connaissances théoriques.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Le but principal de Python: flexibilité et facilité d'utilisationLe but principal de Python: flexibilité et facilité d'utilisationApr 17, 2025 am 12:14 AM

La flexibilité de Python se reflète dans les systèmes de prise en charge et de type dynamique multi-paradigmes, tandis que la facilité d'utilisation provient d'une syntaxe simple et d'une bibliothèque standard riche. 1. Flexibilité: prend en charge la programmation orientée objet, fonctionnelle et procédurale, et les systèmes de type dynamique améliorent l'efficacité de développement. 2. Facilité d'utilisation: La grammaire est proche du langage naturel, la bibliothèque standard couvre un large éventail de fonctions et simplifie le processus de développement.

Python: la puissance de la programmation polyvalentePython: la puissance de la programmation polyvalenteApr 17, 2025 am 12:09 AM

Python est très favorisé pour sa simplicité et son pouvoir, adaptés à tous les besoins des débutants aux développeurs avancés. Sa polyvalence se reflète dans: 1) Facile à apprendre et à utiliser, syntaxe simple; 2) Bibliothèques et cadres riches, tels que Numpy, Pandas, etc.; 3) Support multiplateforme, qui peut être exécuté sur une variété de systèmes d'exploitation; 4) Convient aux tâches de script et d'automatisation pour améliorer l'efficacité du travail.

Apprendre le python en 2 heures par jour: un guide pratiqueApprendre le python en 2 heures par jour: un guide pratiqueApr 17, 2025 am 12:05 AM

Oui, apprenez Python en deux heures par jour. 1. Élaborer un plan d'étude raisonnable, 2. Sélectionnez les bonnes ressources d'apprentissage, 3. Consolider les connaissances apprises par la pratique. Ces étapes peuvent vous aider à maîtriser Python en peu de temps.

Python vs C: avant et inconvénients pour les développeursPython vs C: avant et inconvénients pour les développeursApr 17, 2025 am 12:04 AM

Python convient au développement rapide et au traitement des données, tandis que C convient à des performances élevées et à un contrôle sous-jacent. 1) Python est facile à utiliser, avec syntaxe concise, et convient à la science des données et au développement Web. 2) C a des performances élevées et un contrôle précis, et est souvent utilisé dans les jeux et la programmation système.

Python: engagement du temps et rythme d'apprentissagePython: engagement du temps et rythme d'apprentissageApr 17, 2025 am 12:03 AM

Le temps nécessaire pour apprendre le python varie d'une personne à l'autre, principalement influencé par l'expérience de programmation précédente, la motivation d'apprentissage, les ressources et les méthodes d'apprentissage et le rythme d'apprentissage. Fixez des objectifs d'apprentissage réalistes et apprenez mieux à travers des projets pratiques.

Python: automatisation, script et gestion des tâchesPython: automatisation, script et gestion des tâchesApr 16, 2025 am 12:14 AM

Python excelle dans l'automatisation, les scripts et la gestion des tâches. 1) Automatisation: La sauvegarde du fichier est réalisée via des bibliothèques standard telles que le système d'exploitation et la fermeture. 2) Écriture de script: utilisez la bibliothèque PSUTIL pour surveiller les ressources système. 3) Gestion des tâches: utilisez la bibliothèque de planification pour planifier les tâches. La facilité d'utilisation de Python et la prise en charge de la bibliothèque riche en font l'outil préféré dans ces domaines.

Python et temps: tirer le meilleur parti de votre temps d'étudePython et temps: tirer le meilleur parti de votre temps d'étudeApr 14, 2025 am 12:02 AM

Pour maximiser l'efficacité de l'apprentissage de Python dans un temps limité, vous pouvez utiliser les modules DateTime, Time et Schedule de Python. 1. Le module DateTime est utilisé pour enregistrer et planifier le temps d'apprentissage. 2. Le module de temps aide à définir l'étude et le temps de repos. 3. Le module de planification organise automatiquement des tâches d'apprentissage hebdomadaires.

Python: jeux, GUIS, et plusPython: jeux, GUIS, et plusApr 13, 2025 am 12:14 AM

Python excelle dans les jeux et le développement de l'interface graphique. 1) Le développement de jeux utilise Pygame, fournissant des fonctions de dessin, audio et d'autres fonctions, qui conviennent à la création de jeux 2D. 2) Le développement de l'interface graphique peut choisir Tkinter ou Pyqt. Tkinter est simple et facile à utiliser, PYQT a des fonctions riches et convient au développement professionnel.

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

AI Hentai Generator

AI Hentai Generator

Générez AI Hentai gratuitement.

Article chaud

R.E.P.O. Crystals d'énergie expliqués et ce qu'ils font (cristal jaune)
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Meilleurs paramètres graphiques
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Comment réparer l'audio si vous n'entendez personne
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌
R.E.P.O. Commandes de chat et comment les utiliser
1 Il y a quelques moisBy尊渡假赌尊渡假赌尊渡假赌

Outils chauds

Envoyer Studio 13.0.1

Envoyer Studio 13.0.1

Puissant environnement de développement intégré PHP

SublimeText3 version anglaise

SublimeText3 version anglaise

Recommandé : version Win, prend en charge les invites de code !

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

MantisBT

MantisBT

Mantis est un outil Web de suivi des défauts facile à déployer, conçu pour faciliter le suivi des défauts des produits. Cela nécessite PHP, MySQL et un serveur Web. Découvrez nos services de démonstration et d'hébergement.

VSCode Windows 64 bits Télécharger

VSCode Windows 64 bits Télécharger

Un éditeur IDE gratuit et puissant lancé par Microsoft