Maison >développement back-end >Tutoriel Python >Explication de la syntaxe `df[column] = expression` dans les pandas
Pandas df['column'] = expression
Explication détaillée de la syntaxe : Utilisé pour créer, modifier ou attribuer des colonnes dans Pandas DataFrame (df). Décomposons-le étape par étape, du basique au avancé.
Lorsqu'une colonne n'existe pas dans le DataFrame, attribuer une valeur à df['column']
crée une nouvelle colonne.
Exemple :
<code class="language-python"> import pandas as pd df = pd.DataFrame({'A': [1, 2, 3]}) print(df) # 输出: # A # 0 1 # 1 2 # 2 3 # 创建一个新列 'B',所有值都设置为 0 df['B'] = 0 print(df) # 输出: # A B # 0 1 0 # 1 2 0 # 2 3 0</code>
Si la colonne existe déjà, l'affectation remplace son contenu.
Exemple :
<code class="language-python"> df['B'] = [4, 5, 6] # 替换列 'B' 中的值 print(df) # 输出: # A B # 0 1 4 # 1 2 5 # 2 3 6</code>
Peut attribuer des valeurs aux colonnes en fonction de calculs ou de transformations.
Exemple :
<code class="language-python"> df['C'] = df['A'] + df['B'] # 创建列 'C' 为 'A' 和 'B' 的和 print(df) # 输出: # A B C # 0 1 4 5 # 1 2 5 7 # 2 3 6 9</code>
Vous pouvez utiliser l'indexation booléenne de Pandas pour l'affectation conditionnelle.
Exemple :
<code class="language-python"> df['D'] = df['A'].apply(lambda x: 'Even' if x % 2 == 0 else 'Odd') print(df) # 输出: # A B C D # 0 1 4 5 Odd # 1 2 5 7 Even # 2 3 6 9 Odd</code>
Vous pouvez utiliser plusieurs colonnes dans une seule expression pour des calculs plus complexes.
Exemple :
<code class="language-python"> df['E'] = (df['A'] + df['B']) * df['C'] print(df) # 输出: # A B C D E # 0 1 4 5 Odd 25 # 1 2 5 7 Even 49 # 2 3 6 9 Odd 81</code>
Les affectations numériques peuvent utiliser des opérations de vectorisation pour améliorer les performances.
Exemple :
<code class="language-python"> df['F'] = df['A'] ** 2 + df['B'] ** 2 # 快速向量化计算 print(df) # 输出: # A B C D E F # 0 1 4 5 Odd 25 17 # 1 2 5 7 Even 49 29 # 2 3 6 9 Odd 81 45</code>
np.where
pour l'affectation logique conditionnelleVous pouvez utiliser NumPy pour une affectation conditionnelle.
Exemple :
<code class="language-python"> import numpy as np df['G'] = np.where(df['A'] > 2, 'High', 'Low') print(df) # 输出: # A B C D E F G # 0 1 4 5 Odd 25 17 Low # 1 2 5 7 Even 49 29 Low # 2 3 6 9 Odd 81 45 High</code>
Attribuez des valeurs aux colonnes en fonction d'une fonction personnalisée appliquée à la ligne ou à la colonne.
Exemple :
<code class="language-python"> def custom_function(row): return row['A'] * row['B'] df['H'] = df.apply(custom_function, axis=1) print(df) # 输出: # A B C D E F G H # 0 1 4 5 Odd 25 17 Low 4 # 1 2 5 7 Even 49 29 Low 10 # 2 3 6 9 Odd 81 45 High 18</code>
Plusieurs opérations peuvent être enchaînées pour rendre le code plus concis.
Exemple :
<code class="language-python"> df['I'] = df['A'].add(df['B']).mul(df['C']) print(df) # 输出: # A B C D E F G H I # 0 1 4 5 Odd 25 17 Low 4 25 # 1 2 5 7 Even 49 29 Low 10 49 # 2 3 6 9 Odd 81 45 High 18 81</code>
Utilisez assign()
pour créer ou modifier plusieurs colonnes en un seul appel.
Exemple :
<code class="language-python"> df = df.assign( J=df['A'] + df['B'], K=lambda x: x['J'] * 2 ) print(df) # 输出: # A B C D E F G H I J K # 0 1 4 5 Odd 25 17 Low 4 25 5 10 # 1 2 5 7 Even 49 29 Low 10 49 7 14 # 2 3 6 9 Odd 81 45 High 18 81 9 18</code>
Créez dynamiquement des noms de colonnes en fonction d'une entrée externe.
Exemple :
<code class="language-python"> columns_to_add = ['L', 'M'] for col in columns_to_add: df[col] = df['A'] + df['B'] print(df)</code>
Attribuez des valeurs aux colonnes en fonction d'un DataFrame ou d'un dictionnaire externe.
Exemple :
<code class="language-python"> mapping = {1: 'Low', 2: 'Medium', 3: 'High'} df['N'] = df['A'].map(mapping) print(df) # 输出: # A B C D E F G H I J K N # 0 1 4 5 Odd 25 17 Low 4 25 5 10 Low # 1 2 5 7 Even 49 29 Low 10 49 7 14 Medium # 2 3 6 9 Odd 81 45 High 18 81 9 18 High</code>
apply
, opérations vectorisées) offre de meilleures performances que les boucles Python. df['column'] = expression
La syntaxe est la fonctionnalité principale de Pandas et a un large éventail d'utilisations. Il permet :
Cela fait de Pandas une puissante bibliothèque de manipulation et d'analyse de données.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!