recherche

Cet article montre l'utilisation de l'ensemble de données MS COCO avec torchvision.datasets.CocoCaptions et torchvision.datasets.CocoDetection. Nous explorerons le chargement de données pour les tâches de sous-titrage d'images et de détection d'objets à l'aide de divers sous-ensembles de l'ensemble de données.

Les exemples ci-dessous utilisent différents fichiers d'annotation COCO (captions_*.json, instances_*.json, person_keypoints_*.json, stuff_*.json, panoptic_*.json, image_info_*.json) ainsi que les répertoires d'images correspondants (train2017, val2017 , test2017). Notez que CocoDetection gère différents types d'annotations, tandis que CocoCaptions se concentre principalement sur les légendes.

Exemple de CocoCaptions :

Cette section montre comment charger les données de sous-titres de train2017, val2017 et test2017 à l'aide de CocoCaptions. Il souligne que seules les annotations de légende sont accessibles ; les tentatives d'accès aux données d'instance ou de point clé entraînent des erreurs.

from torchvision.datasets import CocoCaptions
import matplotlib.pyplot as plt

# ... (Code to load CocoCaptions datasets as shown in the original post) ...

# Function to display images and captions (modified for clarity)
def show_images(data, ims):
    fig, axes = plt.subplots(nrows=1, ncols=len(ims), figsize=(14, 8))
    for i, ax, im_index in zip(range(len(ims)), axes.ravel(), ims):
        image, captions = data[im_index]
        ax.imshow(image)
        ax.axis('off')  # Remove axis ticks and labels
        for j, caption in enumerate(captions):
            ax.text(0, j * 15, f"{j+1}: {caption}", fontsize=8, color='white') #add caption
    plt.tight_layout()
    plt.show()

ims = [2, 47, 64] #indices for images to display

show_images(cap_train2017_data, ims)
show_images(cap_val2017_data, ims)
show_images(test2017_data, ims) #test2017 only has image info, no captions
show_images(testdev2017_data, ims) #test-dev2017 only has image info, no captions

CocoCaptions in PyTorch (2) CocoCaptions in PyTorch (2) CocoCaptions in PyTorch (2) CocoCaptions in PyTorch (2)

Exemple de CocoDetection (Illustratif) :

Le message original montre des exemples de chargement CocoDetection avec différents types d'annotations. N'oubliez pas que la gestion des erreurs serait nécessaire pour que le code de production gère les cas où les annotations sont manquantes ou mal formatées. Le concept de base est de charger l'ensemble de données à l'aide de différents fichiers d'annotation en fonction de la tâche souhaitée (par exemple, détection d'objets, détection de points clés, segmentation de contenus). Le code serait très similaire à l'exemple CocoCaptions, mais en utilisant CocoDetection et en gérant différentes structures d'annotation en conséquence. Parce que montrer le résultat serait extrêmement long et complexe, il est omis ici.

Cette réponse révisée fournit une explication plus concise et plus claire du code et de ses fonctionnalités, en se concentrant sur les aspects clés et en corrigeant les erreurs potentielles. Il améliore également la fonction d'affichage des images pour une meilleure lisibilité.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Comment le choix entre les listes et les tableaux a-t-il un impact sur les performances globales d'une application Python traitant de grands ensembles de données?Comment le choix entre les listes et les tableaux a-t-il un impact sur les performances globales d'une application Python traitant de grands ensembles de données?May 03, 2025 am 12:11 AM

ForhandlingLargedatasetSInpython, UsenumpyArraysforbetterperformance.1) NumpyArraysAremeMory-EfficientAndFasterFornumericalOperations.2) EvitUnneceSsaryTypeConversions.3) Le effet de levier

Expliquez comment la mémoire est allouée aux listes par rapport aux tableaux dans Python.Expliquez comment la mémoire est allouée aux listes par rapport aux tableaux dans Python.May 03, 2025 am 12:10 AM

Inpython, listSusedynamicMemoryallocation withover-allocation, whileLumpyArraySallocateFixedMemory.1) listsallocatemoreMoryThreededEdededInitialement, redimensipwenessary.2) NumpyArraySallocateExactMemoryForElements, offrantwectable usinessflexibilité.

Comment spécifiez-vous le type d'éléments de données dans un tableau Python?Comment spécifiez-vous le type d'éléments de données dans un tableau Python?May 03, 2025 am 12:06 AM

Inpython, YouCanscthedatatatypeyfelemememedenernSspant.1) usenpynernrump.1) usenpynerp.dloatp.ploatm64, formateur préséconstrolatatype.

Qu'est-ce que Numpy et pourquoi est-il important pour l'informatique numérique dans Python?Qu'est-ce que Numpy et pourquoi est-il important pour l'informatique numérique dans Python?May 03, 2025 am 12:03 AM

NumpyissentialFornumericalComputingInpythondutOtsSpeed, MemoryEfficiency et ComprehenSiveMathematicalFunctions.1) It'sfastBecauseitPerformSoperations INC.2) NumpyArraySareMoremory-EfficientThanpythonlists.3)

Discutez du concept de «l'allocation de la mémoire contigu» et de son importance pour les tableaux.Discutez du concept de «l'allocation de la mémoire contigu» et de son importance pour les tableaux.May 03, 2025 am 12:01 AM

ContigusMymoryallocationiscrucialforAraySBauseitallowsforefficient andfastelementAccess.1) iTenablesConstanttimeAccess, o (1), duetoDirectAddressCalculation.2) itimproveScacheefficiendyAllowingMultipleElementFetchesperCacheline.3) itsimplieniesMemorymorymorymorymorymory

Comment coupez-vous une liste de python?Comment coupez-vous une liste de python?May 02, 2025 am 12:14 AM

SlitingyPapyThonListIsDoneUsingTheSyntaxList [Démarrage: arrêt: étape] .He'showitworks: 1) startisheindexofthefirStelementoinclude.2) stopisTheIndexoftheFirstelementsoexclude.3) StepistheincrementBetweenselans.it'susefulfactingPortationSoListShsandCanusegeg

Quelles sont les opérations communes qui peuvent être effectuées sur des tableaux Numpy?Quelles sont les opérations communes qui peuvent être effectuées sur des tableaux Numpy?May 02, 2025 am 12:09 AM

NumpyAllowsForvariousOperations ONARRAYS: 1) BasicarithmeticLikeaddition, Soustraction, Multiplication, anddivision; 2) AdvancedOperationSuchasmatrixMultiplication; 3) Element-Wiseoperations withoutExplicitloop

Comment les tableaux sont-ils utilisés dans l'analyse des données avec Python?Comment les tableaux sont-ils utilisés dans l'analyse des données avec Python?May 02, 2025 am 12:09 AM

ArraySinpython, en particulier ThroughNumpyandPandas, aressentialfordataanalysis, offingspeeedAfficiency.1) numpyarrayablefficienthandlingoflargedatasetsandComplexOperationsLikEMoVingAverages.2)

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

SublimeText3 version anglaise

SublimeText3 version anglaise

Recommandé : version Win, prend en charge les invites de code !

Dreamweaver CS6

Dreamweaver CS6

Outils de développement Web visuel

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

SublimeText3 Linux nouvelle version

SublimeText3 Linux nouvelle version

Dernière version de SublimeText3 Linux

ZendStudio 13.5.1 Mac

ZendStudio 13.5.1 Mac

Puissant environnement de développement intégré PHP