Achetez-moi un café☕
*Mémos :
- Mon article explique CocoDetection() en utilisant train2014 avec captions_train2014.json, instances_train2014.json et person_keypoints_train2014.json, val2014 avec captions_val2014.json, instances_val2014.json et person_keypoints_val2014.json et test2017 avec image_info_test2014.json, image_info_test2015.json et image_info_test-dev2015.json.
- Mon article explique CocoDetection() utilisant train2017 avec captions_train2017.json, instances_train2017.json et person_keypoints_train2017.json, val2017 avec captions_val2017.json, instances_val2017.json et person_keypoints_val2017.json et test2017 avec image_info_test2017.json et image_info_test-dev2017.json.
- Mon message explique MS COCO.
CocoDetection() peut utiliser l'ensemble de données MS COCO comme indiqué ci-dessous. * Ceci concerne train2017 avec stuff_train2017.json, val2017 avec stuff_val2017.json, stuff_train2017_pixelmaps avec stuff_train2017.json, stuff_val2017_pixelmaps avec stuff_val2017.json, panoptic_train2017 avec panoptic_train2017.json, panoptic_val2017 avec panoptic_val2017.json et unlabeled2017 avec image_info_unlabeled2017.json :
from torchvision.datasets import CocoDetection stf_train2017_data = CocoDetection( root="data/coco/imgs/train2017", annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json" ) stf_val2017_data = CocoDetection( root="data/coco/imgs/val2017", annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json" ) len(stf_train2017_data), len(stf_val2017_data) # (118287, 5000) # pms_stf_train2017_data = CocoDetection( # root="data/coco/anns/stuff_trainval2017/stuff_train2017_pixelmaps", # annFile="data/coco/anns/stuff_trainval2017/stuff_train2017.json" # ) # Error # pms_stf_val2017_data = CocoDetection( # root="data/coco/anns/stuff_trainval2017/stuff_val2017_pixelmaps", # annFile="data/coco/anns/stuff_trainval2017/stuff_val2017.json" # ) # Error # pan_train2017_data = CocoDetection( # root="data/coco/anns/panoptic_trainval2017/panoptic_train2017", # annFile="data/coco/anns/panoptic_trainval2017/panoptic_train2017.json" # ) # Error # pan_val2017_data = CocoDetection( # root="data/coco/anns/panoptic_trainval2017/panoptic_val2017", # annFile="data/coco/anns/panoptic_trainval2017/panoptic_val2017.json" # ) # Error unlabeled2017_data = CocoDetection( root="data/coco/imgs/unlabeled2017", annFile="data/coco/anns/unlabeled2017/image_info_unlabeled2017.json" ) len(unlabeled2017_data) # 123403 stf_train2017_data[2] # (<pil.image.image image mode="RGB" size="640x428">, # [{'segmentation': {'counts': 'W2a0S2Q1T7mNmHS1R7mN...0100000000', # 'size': [428, 640]}, 'area': 112666.0, 'iscrowd': 0, 'image_id': 30, # 'bbox': [0.0, 0.0, 640.0, 321.0], 'category_id': 119, 'id': 10000010}, # {'segmentation': ..., 'category_id': 124, 'id': 10000011}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 10000014}]) stf_train2017_data[47] # (<pil.image.image image mode="RGB" size="640x427">, # [{'segmentation': {'counts': '\\j1h0[<a0g2n001o0...00001o0000 ... stf_train2017_data image mode="RGB" size="480x640">, # [{'segmentation': {'counts': '0[9e:1O000000O100000...O5mc0F^Zj7', # 'size': [640, 480]}, 'area': 20503.0, 'iscrowd': 0, 'image_id': 370, # 'bbox': [0.0, 0.0, 79.0, 316.0], 'category_id': 102, 'id': 10000383}, # {'segmentation': ..., 'category_id': 105, 'id': 10000384}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 10000389}]) stf_val2017_data[2] # (<pil.image.image image mode="RGB" size="640x483">, # [{'segmentation': {'counts': '\9g5]9O1O1O;EU1kNU1...VMKQ?NY`d3', # 'size': [483, 640]}, 'area': 5104.0, 'iscrowd': 0, 'image_id': 632, # 'bbox': [0.0, 300.0, 392.0, 183.0], 'category_id': 93, 'id': 20000017}, # {'segmentation': ..., 'category_id': 128, 'id': 20000018}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 20000020}]) stf_val2017_data[47] # (<pil.image.image image mode="RGB" size="640x480">, # [{'segmentation': {'counts': '[da7T1X>D3M2J5M4M4LoQg1', # 'size': [480, 640]}, 'area': 122.0, 'iscrowd': 0, 'image_id': 5001, # 'bbox': [515.0, 235.0, 7.0, 36.0], 'category_id': 104, 'id': 20000247}, # {'segmentation': ..., 'category_id': 105, 'id': 20000248}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 20000256}]) stf_val2017_data[64] # (<pil.image.image image mode="RGB" size="640x483">, # [{'segmentation': {'counts': 'UN020mN]B2e>N1O...Mb@N^?2hd2', # 'size': [500, 375]}, 'area': 2404.0, 'iscrowd': 0, 'image_id': 6763, # 'bbox': [0.0, 235.0, 369.0, 237.0], 'category_id': 105, 'id': 20000356}, # {'segmentation': ..., 'category_id': 123, 'id': 20000357}, # ... # {'segmentation': ..., 'category_id': 183, 'id': 20000362}]) unlabeled2017_data[2] # (<pil.image.image image mode="RGB" size="640x427">, []) unlabeled2017_data[47] # (<pil.image.image image mode="RGB" size="428x640">, []) unlabeled2017_data[64] # (<pil.image.image image mode="RGB" size="640x480">, []) import matplotlib.pyplot as plt from matplotlib.patches import Polygon, Rectangle import numpy as np from pycocotools import mask # `show_images1()` doesn't work very well for the images with # segmentations so for it, use `show_images2()` which # more uses the original coco functions. def show_images1(data, ims, main_title=None): file = data.root.split('/')[-1] fig, axes = plt.subplots(nrows=1, ncols=3, figsize=(14, 8)) fig.suptitle(t=main_title, y=0.9, fontsize=14) for i, axis in zip(ims, axes.ravel()): if data[i][1] and "segmentation" in data[i][1][0]: im, anns = data[i] axis.imshow(X=im) axis.set_title(label=anns[0]["image_id"]) ec = ['g', 'r', 'c', 'm', 'y', 'w'] ec_index = 0 for ann in anns: seg = ann['segmentation'] compressed_rld = mask.decode(rleObjs=seg) y_plts, x_plts = np.nonzero(a=np.squeeze(a=compressed_rld)) axis.plot(x_plts, y_plts, alpha=0.4) x, y, w, h = ann['bbox'] rect = Rectangle(xy=(x, y), width=w, height=h, linewidth=3, edgecolor=ec[ec_index], facecolor='none', zorder=2) ec_index += 1 if ec_index == len(ec)-1: ec_index = 0 axis.add_patch(p=rect) elif not data[i][1]: im, _ = data[i] axis.imshow(X=im) fig.tight_layout() plt.show() ims = (2, 47, 64) show_images1(data=stf_train2017_data, ims=ims, main_title="stf_train2017_data") show_images1(data=stf_val2017_data, ims=ims, main_title="stf_val2017_data") show_images1(data=unlabeled2017_data, ims=ims, main_title="unlabeled2017_data") def show_images2(data, index, main_title=None): img_set = data[index] img, img_anns = img_set if img_anns and "segmentation" in img_anns[0]: img_id = img_anns[0]['image_id'] coco = data.coco def show_image(imgIds, areaRng=[], iscrowd=None, draw_bbox=False): plt.figure(figsize=(11, 8)) plt.imshow(X=img) plt.suptitle(t=main_title, y=1, fontsize=14) plt.title(label=img_id, fontsize=14) anns_ids = coco.getAnnIds(imgIds=img_id, areaRng=areaRng, iscrowd=iscrowd) anns = coco.loadAnns(ids=anns_ids) coco.showAnns(anns=anns, draw_bbox=draw_bbox) plt.show() show_image(imgIds=img_id, draw_bbox=True) show_image(imgIds=img_id, draw_bbox=False) show_image(imgIds=img_id, iscrowd=False, draw_bbox=True) show_image(imgIds=img_id, areaRng=[0, 5000], draw_bbox=True) elif not img_anns: plt.figure(figsize=(11, 8)) plt.imshow(X=img) plt.suptitle(t=main_title, y=1, fontsize=14) plt.show() show_images2(data=stf_val2017_data, index=47, main_title="stf_train2017_data") </pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></pil.image.image></a0g2n001o0...00001o0000></pil.image.image></pil.image.image>
show_images1() :
show_images2() :
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

ForhandlingLargedatasetSInpython, UsenumpyArraysforbetterperformance.1) NumpyArraysAremeMory-EfficientAndFasterFornumericalOperations.2) EvitUnneceSsaryTypeConversions.3) Le effet de levier

Inpython, listSusedynamicMemoryallocation withover-allocation, whileLumpyArraySallocateFixedMemory.1) listsallocatemoreMoryThreededEdededInitialement, redimensipwenessary.2) NumpyArraySallocateExactMemoryForElements, offrantwectable usinessflexibilité.

Inpython, YouCanscthedatatatypeyfelemememedenernSspant.1) usenpynernrump.1) usenpynerp.dloatp.ploatm64, formateur préséconstrolatatype.

NumpyissentialFornumericalComputingInpythondutOtsSpeed, MemoryEfficiency et ComprehenSiveMathematicalFunctions.1) It'sfastBecauseitPerformSoperations INC.2) NumpyArraySareMoremory-EfficientThanpythonlists.3)

ContigusMymoryallocationiscrucialforAraySBauseitallowsforefficient andfastelementAccess.1) iTenablesConstanttimeAccess, o (1), duetoDirectAddressCalculation.2) itimproveScacheefficiendyAllowingMultipleElementFetchesperCacheline.3) itsimplieniesMemorymorymorymorymorymory

SlitingyPapyThonListIsDoneUsingTheSyntaxList [Démarrage: arrêt: étape] .He'showitworks: 1) startisheindexofthefirStelementoinclude.2) stopisTheIndexoftheFirstelementsoexclude.3) StepistheincrementBetweenselans.it'susefulfactingPortationSoListShsandCanusegeg

NumpyAllowsForvariousOperations ONARRAYS: 1) BasicarithmeticLikeaddition, Soustraction, Multiplication, anddivision; 2) AdvancedOperationSuchasmatrixMultiplication; 3) Element-Wiseoperations withoutExplicitloop

ArraySinpython, en particulier ThroughNumpyandPandas, aressentialfordataanalysis, offingspeeedAfficiency.1) numpyarrayablefficienthandlingoflargedatasetsandComplexOperationsLikEMoVingAverages.2)


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

SublimeText3 version anglaise
Recommandé : version Win, prend en charge les invites de code !

Dreamweaver CS6
Outils de développement Web visuel

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

SublimeText3 Linux nouvelle version
Dernière version de SublimeText3 Linux

ZendStudio 13.5.1 Mac
Puissant environnement de développement intégré PHP
