


Écriture par lots efficace dans DynamoDB avec Python : un guide étape par étape
Ce guide démontre l'insertion efficace de données dans AWS DynamoDB à l'aide de Python, en se concentrant sur de grands ensembles de données. Nous couvrirons : la création de tables (si nécessaire), la génération de données aléatoires et l'écriture par lots pour des performances optimales et des économies de coûts. La bibliothèque boto3
est obligatoire ; installez-le en utilisant pip install boto3
.
1. Configuration de la table DynamoDB :
Tout d'abord, nous établissons une session AWS et définissons la région de la table DynamoDB :
import boto3 from botocore.exceptions import ClientError dynamodb = boto3.resource('dynamodb', region_name='us-east-1') table_name = 'My_DynamoDB_Table_Name'
La fonction create_table_if_not_exists()
vérifie l'existence de la table et la crée avec une clé primaire (id
) si absente :
def create_table_if_not_exists(): try: table = dynamodb.Table(table_name) table.load() print(f"Table '{table_name}' exists.") return table except ClientError as e: if e.response['Error']['Code'] == 'ResourceNotFoundException': print(f"Creating table '{table_name}'...") table = dynamodb.create_table( TableName=table_name, KeySchema=[{'AttributeName': 'id', 'KeyType': 'HASH'}], AttributeDefinitions=[{'AttributeName': 'id', 'AttributeType': 'S'}], ProvisionedThroughput={'ReadCapacityUnits': 5, 'WriteCapacityUnits': 5} ) table.meta.client.get_waiter('table_exists').wait(TableName=table_name) print(f"Table '{table_name}' created.") return table else: print(f"Error: {e}") raise
2. Génération de données aléatoires :
Nous générerons des exemples d'enregistrements avec id
, name
, timestamp
et value
:
import random import string from datetime import datetime def generate_random_string(length=10): return ''.join(random.choices(string.ascii_letters + string.digits, k=length)) def generate_record(): return { 'id': generate_random_string(16), 'name': generate_random_string(8), 'timestamp': str(datetime.utcnow()), 'value': random.randint(1, 1000) }
3. Écriture de données par lots :
La fonction batch_write()
utilise batch_writer()
de DynamoDB pour une insertion groupée efficace (jusqu'à 25 éléments par lot) :
def batch_write(table, records): with table.batch_writer() as batch: for record in records: batch.put_item(Item=record)
4. Flux de travail principal :
La fonction principale orchestre la création de tables, la génération de données et l'écriture par lots :
def main(): table = create_table_if_not_exists() records_batch = [] for i in range(1, 1001): record = generate_record() records_batch.append(record) if len(records_batch) == 25: batch_write(table, records_batch) records_batch = [] print(f"Wrote {i} records") if records_batch: batch_write(table, records_batch) print(f"Wrote remaining {len(records_batch)} records") if __name__ == '__main__': main()
5. Conclusion :
Ce script exploite l'écriture par lots pour optimiser les interactions DynamoDB pour des volumes de données importants. N'oubliez pas d'ajuster les paramètres (taille du lot, nombre d'enregistrements, etc.) en fonction de vos besoins spécifiques. Pensez à explorer les fonctionnalités avancées de DynamoDB pour améliorer davantage les performances.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

SlitingyPapyThonListIsDoneUsingTheSyntaxList [Démarrage: arrêt: étape] .He'showitworks: 1) startisheindexofthefirStelementoinclude.2) stopisTheIndexoftheFirstelementsoexclude.3) StepistheincrementBetweenselans.it'susefulfactingPortationSoListShsandCanusegeg

NumpyAllowsForvariousOperations ONARRAYS: 1) BasicarithmeticLikeaddition, Soustraction, Multiplication, anddivision; 2) AdvancedOperationSuchasmatrixMultiplication; 3) Element-Wiseoperations withoutExplicitloop

ArraySinpython, en particulier ThroughNumpyandPandas, aressentialfordataanalysis, offingspeeedAfficiency.1) numpyarrayablefficienthandlingoflargedatasetsandComplexOperationsLikEMoVingAverages.2)

ListsandNumpyArraysInpythonHaveDidifferentMemoryfootprints: listsaRemoreFlexibles Butlessmemory économe, tandis que la liste de résensés est-ce qui

ToenSurepythonscriptsBeHavecorrectlyAcrossDevelopment, mise en scène et production, catégories de type: 1) EnvironmentVariblesForsImplesettings, 2) ConfigurationFilesForComplexsetups et3) dynamicloadingforadaptability.eachMethodoffersNebeneFitsAndreCeresca

La syntaxe de base pour le découpage de la liste Python est la liste [Démarrage: arrêt: étape]. 1.Start est le premier index d'élément inclus, 2.STOP est le premier indice d'élément exclu et 3.StEP détermine la taille de l'étape entre les éléments. Les tranches sont non seulement utilisées pour extraire les données, mais aussi pour modifier et inverser les listes.

ListesoutPerformarRaySin: 1) dynamicingizingandfrequentinSertions / Deletions, 2) StoringheteroGeneousData, and3) MemoryEfficiencyForsparsedata, butmayhaveslightperformanceCostSincertorations.

Toconvertapythonarraytoalist, usethelist () Constructororageneratorexpression.1) ImportTheArrayModuleandCreateArray.2) Uselist (Arr) ou [Xforxinarr] à Convertittoalist, considérant la performance et le domaine de l'émie-efficacité pour les étages.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

mPDF
mPDF est une bibliothèque PHP qui peut générer des fichiers PDF à partir de HTML encodé en UTF-8. L'auteur original, Ian Back, a écrit mPDF pour générer des fichiers PDF « à la volée » depuis son site Web et gérer différentes langues. Il est plus lent et produit des fichiers plus volumineux lors de l'utilisation de polices Unicode que les scripts originaux comme HTML2FPDF, mais prend en charge les styles CSS, etc. et présente de nombreuses améliorations. Prend en charge presque toutes les langues, y compris RTL (arabe et hébreu) et CJK (chinois, japonais et coréen). Prend en charge les éléments imbriqués au niveau du bloc (tels que P, DIV),

Navigateur d'examen sécurisé
Safe Exam Browser est un environnement de navigation sécurisé permettant de passer des examens en ligne en toute sécurité. Ce logiciel transforme n'importe quel ordinateur en poste de travail sécurisé. Il contrôle l'accès à n'importe quel utilitaire et empêche les étudiants d'utiliser des ressources non autorisées.

MantisBT
Mantis est un outil Web de suivi des défauts facile à déployer, conçu pour faciliter le suivi des défauts des produits. Cela nécessite PHP, MySQL et un serveur Web. Découvrez nos services de démonstration et d'hébergement.

Adaptateur de serveur SAP NetWeaver pour Eclipse
Intégrez Eclipse au serveur d'applications SAP NetWeaver.

VSCode Windows 64 bits Télécharger
Un éditeur IDE gratuit et puissant lancé par Microsoft
