


Nous aimons tous le trafic, n'est-ce pas ? La seule fois où je pense à quel point j'ai complètement raté ma présentation (trop réfléchir est pénible).
Blague à part, j'ai voulu créer un projet dans lequel je peux rechercher du trafic en temps réel en tant que PoC afin de l'améliorer encore à l'avenir. Rencontrez le prédicteur d’embouteillages.
Je vais vous expliquer le déploiement de Traffic Congestion Predictor à l'aide d'AWS Bedrock. AWS Bedrock fournit un service entièrement géré pour les modèles de base, ce qui le rend parfait pour le déploiement d'applications d'IA. Nous couvrirons tout, de la configuration initiale au déploiement final et aux tests.
Maintenant, les prérequis
- Compte AWS avec les autorisations appropriées (J'ai dû utiliser ma carte de débit pour la vérification car je pensais que son utilisation était gratuite jusqu'à une certaine limite. Douleur).
- Python 3.8
- Code de prévision des embouteillages (issu d'un développement précédent)
- AWS CLI installé et configuré
- Une connaissance de base des services Python et AWS fera très bien l'affaire.
Étape 1 : Préparer votre environnement
Tout d'abord, configurez votre environnement de développement :
# Create a new virtual environment python -m venv bedrock-env source bedrock-env/bin/activate # On Windows use: bedrock-env\Scripts\activate # Install required packages pip install boto3 pandas numpy scikit-learn streamlit plotly
Étape 2 : Configuration d'AWS Bedrock
Accédez à la console AWS et activez AWS Bedrock
Créer un nouveau modèle dans Bedrock :
- Accédez à la console AWS Bedrock
- Sélectionnez "Accès au modèle"
- Demander l'accès à la famille modèle Claude
- Attendez l'approbation (généralement instantanée mais tout peut arriver)
Étape 3 : Modifier le code pour l'intégration de Bedrock
Créez un nouveau fichier "bedrock_integration.py" :
import boto3 import json import numpy as np import pandas as pd from typing import Dict, Any class TrafficPredictor: def __init__(self): self.bedrock = boto3.client( service_name='bedrock-runtime', region_name='us-east-1' # Change to your region ) def prepare_features(self, input_data: Dict[str, Any]) -> pd.DataFrame: # Convert input data to model features hour = input_data['hour'] day = input_data['day'] features = pd.DataFrame({ 'hour_sin': [np.sin(2 * np.pi * hour/24)], 'hour_cos': [np.cos(2 * np.pi * hour/24)], 'day_sin': [np.sin(2 * np.pi * day/7)], 'day_cos': [np.cos(2 * np.pi * day/7)], 'temperature': [input_data['temperature']], 'precipitation': [input_data['precipitation']], 'special_event': [input_data['special_event']], 'road_work': [input_data['road_work']], 'vehicle_count': [input_data['vehicle_count']] }) return features def predict(self, input_data: Dict[str, Any]) -> float: features = self.prepare_features(input_data) # Prepare prompt for Claude prompt = f""" Based on the following traffic conditions, predict the congestion level (0-10): - Time: {input_data['hour']}:00 - Day of week: {input_data['day']} - Temperature: {input_data['temperature']}°C - Precipitation: {input_data['precipitation']}mm - Special event: {'Yes' if input_data['special_event'] else 'No'} - Road work: {'Yes' if input_data['road_work'] else 'No'} - Vehicle count: {input_data['vehicle_count']} Return only the numerical prediction. """ # Call Bedrock response = self.bedrock.invoke_model( modelId='anthropic.claude-v2', body=json.dumps({ "prompt": prompt, "max_tokens": 10, "temperature": 0 }) ) # Parse response response_body = json.loads(response['body'].read()) prediction = float(response_body['completion'].strip()) return np.clip(prediction, 0, 10)
Étape 4 : Créer un backend FastAPI
Créer "api.py :"
from fastapi import FastAPI, HTTPException from pydantic import BaseModel from bedrock_integration import TrafficPredictor from typing import Dict, Any app = FastAPI() predictor = TrafficPredictor() class PredictionInput(BaseModel): hour: int day: int temperature: float precipitation: float special_event: bool road_work: bool vehicle_count: int @app.post("/predict") async def predict_traffic(input_data: PredictionInput) -> Dict[str, float]: try: prediction = predictor.predict(input_data.dict()) return {"congestion_level": prediction} except Exception as e: raise HTTPException(status_code=500, detail=str(e))
Étape 5 : Créer une infrastructure AWS
Créer "infrastructure.py" :
import boto3 import json def create_infrastructure(): # Create ECR repository ecr = boto3.client('ecr') try: ecr.create_repository(repositoryName='traffic-predictor') except ecr.exceptions.RepositoryAlreadyExistsException: pass # Create ECS cluster ecs = boto3.client('ecs') ecs.create_cluster(clusterName='traffic-predictor-cluster') # Create task definition task_def = { 'family': 'traffic-predictor', 'containerDefinitions': [{ 'name': 'traffic-predictor', 'image': f'{ecr.describe_repositories()["repositories"][0]["repositoryUri"]}:latest', 'memory': 512, 'cpu': 256, 'essential': True, 'portMappings': [{ 'containerPort': 8000, 'hostPort': 8000, 'protocol': 'tcp' }] }], 'requiresCompatibilities': ['FARGATE'], 'networkMode': 'awsvpc', 'cpu': '256', 'memory': '512' } ecs.register_task_definition(**task_def)
Étape 6 : Conteneuriser l’application
Créer "Dockerfile :"
FROM python:3.9-slim WORKDIR /app COPY requirements.txt . RUN pip install --no-cache-dir -r requirements.txt COPY . . CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "8000"]
Créer "requirements.txt :"
fastapi uvicorn boto3 pandas numpy scikit-learn
Étape 7 : Déployer sur AWS
Exécutez ces commandes :
# Build and push Docker image aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com docker build -t traffic-predictor . docker tag traffic-predictor:latest $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com/traffic-predictor:latest docker push $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com/traffic-predictor:latest # Create infrastructure python infrastructure.py
Étape 8 : Mettre à jour l’interface Streamlit
Modifiez "app.py" pour vous connecter à l'API :
import streamlit as st import requests import plotly.graph_objects as go import plotly.express as px API_ENDPOINT = "your-api-endpoint" def predict_traffic(input_data): response = requests.post(f"{API_ENDPOINT}/predict", json=input_data) return response.json()["congestion_level"] # Rest of the Streamlit code remains the same, but replace direct model calls # with API calls using predict_traffic()
Étape 9 : Tests et surveillance
Testez le point de terminaison de l'API :
curl -X POST "your-api-endpoint/predict" \ -H "Content-Type: application/json" \ -d '{"hour":12,"day":1,"temperature":25,"precipitation":0,"special_event":false,"road_work":false,"vehicle_count":1000}'
Surveiller à l'aide d'AWS CloudWatch :
- Configurer le tableau de bord CloudWatch
- Créer des alarmes pour les taux d'erreur et la latence
- Surveiller l'utilisation et les coûts de l'API
Si tout se passe bien. Félicitations! Vous avez déployé avec succès un prédicteur d'embouteillages. Rembourrez-vous le dos pour celui-là ! Assurez-vous de surveiller les coûts et les performances, de mettre régulièrement à jour le modèle et de mettre en œuvre un pipeline CI/CD. Les prochaines étapes consistent à ajouter l'authentification des utilisateurs, à améliorer la surveillance et les alertes, à optimiser les performances du modèle et à ajouter davantage de fonctionnalités basées sur les commentaires des utilisateurs.
Merci d'avoir lu ceci. Faites-moi part de vos réflexions, questions ou observations !
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

La syntaxe de base pour le découpage de la liste Python est la liste [Démarrage: arrêt: étape]. 1.Start est le premier index d'élément inclus, 2.STOP est le premier indice d'élément exclu et 3.StEP détermine la taille de l'étape entre les éléments. Les tranches sont non seulement utilisées pour extraire les données, mais aussi pour modifier et inverser les listes.

ListesoutPerformarRaySin: 1) dynamicingizingandfrequentinSertions / Deletions, 2) StoringheteroGeneousData, and3) MemoryEfficiencyForsparsedata, butmayhaveslightperformanceCostSincertorations.

Toconvertapythonarraytoalist, usethelist () Constructororageneratorexpression.1) ImportTheArrayModuleandCreateArray.2) Uselist (Arr) ou [Xforxinarr] à Convertittoalist, considérant la performance et le domaine de l'émie-efficacité pour les étages.

ChooseArraySoverListsInpyThonforBetterperformanceAndmemeMoryEfficacitéInSpecificScenarios.1) LargenumericalDatasets: ArraySreduceDeMemoryUsage.2)

Dans Python, vous pouvez utiliser pour les boucles, énumérer et les compréhensions de liste pour traverser les listes; En Java, vous pouvez utiliser des boucles traditionnelles et améliorées pour les boucles pour traverser les tableaux. 1. Les méthodes de traversée de la liste Python incluent: pour la compréhension de la boucle, de l'énumération et de la liste. 2. Les méthodes de traversée du tableau Java comprennent: traditionnel pour la boucle et amélioré pour la boucle.

L'article traite de la nouvelle instruction "Match" de Python introduite dans la version 3.10, qui constitue un équivalent pour les instructions de commutation dans d'autres langues. Il améliore la lisibilité du code et offre des avantages de performance par rapport aux if-elif-el traditionnels

Les groupes d'exception dans Python 3.11 permettent de gérer plusieurs exceptions simultanément, améliorant la gestion des erreurs dans des scénarios simultanés et des opérations complexes.

Les annotations de fonction dans Python ajoutent des métadonnées aux fonctions pour la vérification de type, la documentation et la prise en charge de l'IDE. Ils améliorent la lisibilité du code, la maintenance et sont cruciaux dans le développement de l'API, la science des données et la création de bibliothèques.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

SublimeText3 version anglaise
Recommandé : version Win, prend en charge les invites de code !

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Listes Sec
SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

Adaptateur de serveur SAP NetWeaver pour Eclipse
Intégrez Eclipse au serveur d'applications SAP NetWeaver.
