recherche
Maisondéveloppement back-endTutoriel PythonDéploiement d'un prédicteur de congestion du trafic IA à l'aide d'AWS Bedrock : un aperçu complet

Deploying an AI Traffic Congestion Predictor using AWS Bedrock: A Complete Overview

Nous aimons tous le trafic, n'est-ce pas ? La seule fois où je pense à quel point j'ai complètement raté ma présentation (trop réfléchir est pénible).

Blague à part, j'ai voulu créer un projet dans lequel je peux rechercher du trafic en temps réel en tant que PoC afin de l'améliorer encore à l'avenir. Rencontrez le prédicteur d’embouteillages.

Je vais vous expliquer le déploiement de Traffic Congestion Predictor à l'aide d'AWS Bedrock. AWS Bedrock fournit un service entièrement géré pour les modèles de base, ce qui le rend parfait pour le déploiement d'applications d'IA. Nous couvrirons tout, de la configuration initiale au déploiement final et aux tests.

Maintenant, les prérequis

  • Compte AWS avec les autorisations appropriées (J'ai dû utiliser ma carte de débit pour la vérification car je pensais que son utilisation était gratuite jusqu'à une certaine limite. Douleur).
  • Python 3.8
  • Code de prévision des embouteillages (issu d'un développement précédent)
  • AWS CLI installé et configuré
  • Une connaissance de base des services Python et AWS fera très bien l'affaire.

Étape 1 : Préparer votre environnement

Tout d'abord, configurez votre environnement de développement :

# Create a new virtual environment
python -m venv bedrock-env
source bedrock-env/bin/activate  # On Windows use: bedrock-env\Scripts\activate

# Install required packages
pip install boto3 pandas numpy scikit-learn streamlit plotly

Étape 2 : Configuration d'AWS Bedrock

  1. Accédez à la console AWS et activez AWS Bedrock

  2. Créer un nouveau modèle dans Bedrock :

  • Accédez à la console AWS Bedrock
  • Sélectionnez "Accès au modèle"
  • Demander l'accès à la famille modèle Claude
  • Attendez l'approbation (généralement instantanée mais tout peut arriver)

Étape 3 : Modifier le code pour l'intégration de Bedrock

Créez un nouveau fichier "bedrock_integration.py" :

import boto3
import json
import numpy as np
import pandas as pd
from typing import Dict, Any

class TrafficPredictor:
    def __init__(self):
        self.bedrock = boto3.client(
            service_name='bedrock-runtime',
            region_name='us-east-1'  # Change to your region
        )

    def prepare_features(self, input_data: Dict[str, Any]) -> pd.DataFrame:
        # Convert input data to model features
        hour = input_data['hour']
        day = input_data['day']

        features = pd.DataFrame({
            'hour_sin': [np.sin(2 * np.pi * hour/24)],
            'hour_cos': [np.cos(2 * np.pi * hour/24)],
            'day_sin': [np.sin(2 * np.pi * day/7)],
            'day_cos': [np.cos(2 * np.pi * day/7)],
            'temperature': [input_data['temperature']],
            'precipitation': [input_data['precipitation']],
            'special_event': [input_data['special_event']],
            'road_work': [input_data['road_work']],
            'vehicle_count': [input_data['vehicle_count']]
        })
        return features

    def predict(self, input_data: Dict[str, Any]) -> float:
        features = self.prepare_features(input_data)

        # Prepare prompt for Claude
        prompt = f"""
        Based on the following traffic conditions, predict the congestion level (0-10):
        - Time: {input_data['hour']}:00
        - Day of week: {input_data['day']}
        - Temperature: {input_data['temperature']}°C
        - Precipitation: {input_data['precipitation']}mm
        - Special event: {'Yes' if input_data['special_event'] else 'No'}
        - Road work: {'Yes' if input_data['road_work'] else 'No'}
        - Vehicle count: {input_data['vehicle_count']}

        Return only the numerical prediction.
        """

        # Call Bedrock
        response = self.bedrock.invoke_model(
            modelId='anthropic.claude-v2',
            body=json.dumps({
                "prompt": prompt,
                "max_tokens": 10,
                "temperature": 0
            })
        )

        # Parse response
        response_body = json.loads(response['body'].read())
        prediction = float(response_body['completion'].strip())

        return np.clip(prediction, 0, 10)

Étape 4 : Créer un backend FastAPI

Créer "api.py :"

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from bedrock_integration import TrafficPredictor
from typing import Dict, Any

app = FastAPI()
predictor = TrafficPredictor()

class PredictionInput(BaseModel):
    hour: int
    day: int
    temperature: float
    precipitation: float
    special_event: bool
    road_work: bool
    vehicle_count: int

@app.post("/predict")
async def predict_traffic(input_data: PredictionInput) -> Dict[str, float]:
    try:
        prediction = predictor.predict(input_data.dict())
        return {"congestion_level": prediction}
    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

Étape 5 : Créer une infrastructure AWS

Créer "infrastructure.py" :

import boto3
import json

def create_infrastructure():
    # Create ECR repository
    ecr = boto3.client('ecr')
    try:
        ecr.create_repository(repositoryName='traffic-predictor')
    except ecr.exceptions.RepositoryAlreadyExistsException:
        pass

    # Create ECS cluster
    ecs = boto3.client('ecs')
    ecs.create_cluster(clusterName='traffic-predictor-cluster')

    # Create task definition
    task_def = {
        'family': 'traffic-predictor',
        'containerDefinitions': [{
            'name': 'traffic-predictor',
            'image': f'{ecr.describe_repositories()["repositories"][0]["repositoryUri"]}:latest',
            'memory': 512,
            'cpu': 256,
            'essential': True,
            'portMappings': [{
                'containerPort': 8000,
                'hostPort': 8000,
                'protocol': 'tcp'
            }]
        }],
        'requiresCompatibilities': ['FARGATE'],
        'networkMode': 'awsvpc',
        'cpu': '256',
        'memory': '512'
    }

    ecs.register_task_definition(**task_def)

Étape 6 : Conteneuriser l’application

Créer "Dockerfile :"

FROM python:3.9-slim

WORKDIR /app

COPY requirements.txt .
RUN pip install --no-cache-dir -r requirements.txt

COPY . .

CMD ["uvicorn", "api:app", "--host", "0.0.0.0", "--port", "8000"]

Créer "requirements.txt :"

fastapi
uvicorn
boto3
pandas
numpy
scikit-learn

Étape 7 : Déployer sur AWS

Exécutez ces commandes :

# Build and push Docker image
aws ecr get-login-password --region us-east-1 | docker login --username AWS --password-stdin $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com
docker build -t traffic-predictor .
docker tag traffic-predictor:latest $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com/traffic-predictor:latest
docker push $AWS_ACCOUNT_ID.dkr.ecr.us-east-1.amazonaws.com/traffic-predictor:latest

# Create infrastructure
python infrastructure.py

Étape 8 : Mettre à jour l’interface Streamlit

Modifiez "app.py" pour vous connecter à l'API :

import streamlit as st
import requests
import plotly.graph_objects as go
import plotly.express as px

API_ENDPOINT = "your-api-endpoint"

def predict_traffic(input_data):
    response = requests.post(f"{API_ENDPOINT}/predict", json=input_data)
    return response.json()["congestion_level"]

# Rest of the Streamlit code remains the same, but replace direct model calls
# with API calls using predict_traffic()

Étape 9 : Tests et surveillance

Testez le point de terminaison de l'API :

curl -X POST "your-api-endpoint/predict" \
     -H "Content-Type: application/json" \
     -d '{"hour":12,"day":1,"temperature":25,"precipitation":0,"special_event":false,"road_work":false,"vehicle_count":1000}'

Surveiller à l'aide d'AWS CloudWatch :

  • Configurer le tableau de bord CloudWatch
  • Créer des alarmes pour les taux d'erreur et la latence
  • Surveiller l'utilisation et les coûts de l'API

Si tout se passe bien. Félicitations! Vous avez déployé avec succès un prédicteur d'embouteillages. Rembourrez-vous le dos pour celui-là ! Assurez-vous de surveiller les coûts et les performances, de mettre régulièrement à jour le modèle et de mettre en œuvre un pipeline CI/CD. Les prochaines étapes consistent à ajouter l'authentification des utilisateurs, à améliorer la surveillance et les alertes, à optimiser les performances du modèle et à ajouter davantage de fonctionnalités basées sur les commentaires des utilisateurs.

Merci d'avoir lu ceci. Faites-moi part de vos réflexions, questions ou observations !

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Comment trancher un tableau Python?Comment trancher un tableau Python?May 01, 2025 am 12:18 AM

La syntaxe de base pour le découpage de la liste Python est la liste [Démarrage: arrêt: étape]. 1.Start est le premier index d'élément inclus, 2.STOP est le premier indice d'élément exclu et 3.StEP détermine la taille de l'étape entre les éléments. Les tranches sont non seulement utilisées pour extraire les données, mais aussi pour modifier et inverser les listes.

Dans quelles circonstances les listes pourraient-elles mieux fonctionner que les tableaux?Dans quelles circonstances les listes pourraient-elles mieux fonctionner que les tableaux?May 01, 2025 am 12:06 AM

ListesoutPerformarRaySin: 1) dynamicingizingandfrequentinSertions / Deletions, 2) StoringheteroGeneousData, and3) MemoryEfficiencyForsparsedata, butmayhaveslightperformanceCostSincertorations.

Comment pouvez-vous convertir un tableau Python en une liste Python?Comment pouvez-vous convertir un tableau Python en une liste Python?May 01, 2025 am 12:05 AM

Toconvertapythonarraytoalist, usethelist () Constructororageneratorexpression.1) ImportTheArrayModuleandCreateArray.2) Uselist (Arr) ou [Xforxinarr] à Convertittoalist, considérant la performance et le domaine de l'émie-efficacité pour les étages.

Quel est le but d'utiliser des tableaux lorsque des listes existent dans Python?Quel est le but d'utiliser des tableaux lorsque des listes existent dans Python?May 01, 2025 am 12:04 AM

ChooseArraySoverListsInpyThonforBetterperformanceAndmemeMoryEfficacitéInSpecificScenarios.1) LargenumericalDatasets: ArraySreduceDeMemoryUsage.2)

Expliquez comment itérer les éléments d'une liste et un tableau.Expliquez comment itérer les éléments d'une liste et un tableau.May 01, 2025 am 12:01 AM

Dans Python, vous pouvez utiliser pour les boucles, énumérer et les compréhensions de liste pour traverser les listes; En Java, vous pouvez utiliser des boucles traditionnelles et améliorées pour les boucles pour traverser les tableaux. 1. Les méthodes de traversée de la liste Python incluent: pour la compréhension de la boucle, de l'énumération et de la liste. 2. Les méthodes de traversée du tableau Java comprennent: traditionnel pour la boucle et amélioré pour la boucle.

Qu'est-ce que la déclaration de commutation Python?Qu'est-ce que la déclaration de commutation Python?Apr 30, 2025 pm 02:08 PM

L'article traite de la nouvelle instruction "Match" de Python introduite dans la version 3.10, qui constitue un équivalent pour les instructions de commutation dans d'autres langues. Il améliore la lisibilité du code et offre des avantages de performance par rapport aux if-elif-el traditionnels

Que sont les groupes d'exception à Python?Que sont les groupes d'exception à Python?Apr 30, 2025 pm 02:07 PM

Les groupes d'exception dans Python 3.11 permettent de gérer plusieurs exceptions simultanément, améliorant la gestion des erreurs dans des scénarios simultanés et des opérations complexes.

Que sont les annotations de fonction dans Python?Que sont les annotations de fonction dans Python?Apr 30, 2025 pm 02:06 PM

Les annotations de fonction dans Python ajoutent des métadonnées aux fonctions pour la vérification de type, la documentation et la prise en charge de l'IDE. Ils améliorent la lisibilité du code, la maintenance et sont cruciaux dans le développement de l'API, la science des données et la création de bibliothèques.

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

SublimeText3 version anglaise

SublimeText3 version anglaise

Recommandé : version Win, prend en charge les invites de code !

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit

SublimeText3 version Mac

SublimeText3 version Mac

Logiciel d'édition de code au niveau de Dieu (SublimeText3)

Listes Sec

Listes Sec

SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

Adaptateur de serveur SAP NetWeaver pour Eclipse

Adaptateur de serveur SAP NetWeaver pour Eclipse

Intégrez Eclipse au serveur d'applications SAP NetWeaver.