Pour compléter l'analogie du passage du relais, explorons comment télécharger les fichiers JSONL préparés vers OpenAI à l'aide de leur API Files, ce qui nous permet de nous rapprocher de l'affinage du modèle.
Guide étape par étape pour télécharger des fichiers
Prérequis
- Assurez-vous que le package openai Python est installé. Sinon, installez-le en utilisant :
pip installer openai
- Obtenez votre clé API OpenAI à partir des paramètres API d'OpenAI.
_ Télécharger des fichiers sur OpenAI_
- Voici le script Python pour télécharger les fichiers JSONL préparés.
from openai import OpenAI client = OpenAI() # File paths for training and testing datasets file_paths = { "train": "train.jsonl", "test": "test.jsonl" } # Function to upload a file def upload_file(file_path, purpose="fine-tune"): try: response = client.files.create( file=open(file_path, "rb"), purpose=purpose ) print(f"File uploaded successfully: {file_path}") print(f"File ID: {response['id']}") return response["id"] except Exception as e: print(f"Failed to upload {file_path}: {e}") return None # Upload both training and test files file_ids = {split: upload_file(file_paths[split]) for split in file_paths} print("Uploaded file IDs:", file_ids)
Explication du Code
Configuration de la clé API :
- Définissez votre clé API OpenAI pour authentifier les demandes.
Chemins des fichiers :
- Spécifiez les chemins d'accès aux fichiers JSONL préparés précédemment (train.jsonl et test.jsonl).
Téléchargement de fichiers :
- Utilisez openai.files.create() pour télécharger les fichiers JSONL sur OpenAI.
- Le paramètre d'objectif est défini sur « affiner » pour affiner les ensembles de données.
Gestion des erreurs :
- Détectez et enregistrez toutes les erreurs rencontrées pendant le processus de téléchargement.
ID de fichier :
- Après le téléchargement, OpenAI attribue un file_id unique à chaque fichier téléchargé. Ces identifiants seront nécessaires lors du lancement du processus de réglage fin.
Exemple de sortie
Si le téléchargement réussit, vous verrez quelque chose comme ceci :
File uploaded successfully: dataset/train.jsonl File ID: file-abc123xyz456 File uploaded successfully: dataset/test.jsonl File ID: file-def789uvw012 Uploaded file IDs: {'train': 'file-abc123xyz456', 'test': 'file-def789uvw012'}
Pourquoi cette étape est-elle importante ?
Le téléchargement des fichiers JSONL s'apparente à la remise par Six Triple Eight de son courrier trié aux services postaux pour la livraison finale. Sans cette étape, le processus de réglage fin ne peut pas se poursuivre, car l'infrastructure d'OpenAI a besoin d'accéder à des données structurées et validées pour entraîner efficacement le modèle.
Une fois téléchargé, le relais a été passé à OpenAI et vous êtes prêt à passer au réglage fin du modèle à l'aide de ces fichiers.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Python et C ont des différences significatives dans la gestion et le contrôle de la mémoire. 1. Python utilise la gestion automatique de la mémoire, basée sur le comptage des références et la collecte des ordures, simplifiant le travail des programmeurs. 2.C nécessite une gestion manuelle de la mémoire, en fournissant plus de contrôle mais en augmentant la complexité et le risque d'erreur. Quelle langue choisir doit être basée sur les exigences du projet et la pile de technologie d'équipe.

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Que ce soit pour choisir Python ou C dépend des exigences du projet: 1) Python convient au développement rapide, à la science des données et aux scripts en raison de sa syntaxe concise et de ses bibliothèques riches; 2) C convient aux scénarios qui nécessitent des performances élevées et un contrôle sous-jacent, tels que la programmation système et le développement de jeux, en raison de sa compilation et de sa gestion de la mémoire manuelle.

Python est largement utilisé dans la science des données et l'apprentissage automatique, s'appuyant principalement sur sa simplicité et son puissant écosystème de bibliothèque. 1) Pandas est utilisé pour le traitement et l'analyse des données, 2) Numpy fournit des calculs numériques efficaces, et 3) Scikit-Learn est utilisé pour la construction et l'optimisation du modèle d'apprentissage automatique, ces bibliothèques font de Python un outil idéal pour la science des données et l'apprentissage automatique.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

Listes Sec
SecLists est le compagnon ultime du testeur de sécurité. Il s'agit d'une collection de différents types de listes fréquemment utilisées lors des évaluations de sécurité, le tout en un seul endroit. SecLists contribue à rendre les tests de sécurité plus efficaces et productifs en fournissant facilement toutes les listes dont un testeur de sécurité pourrait avoir besoin. Les types de listes incluent les noms d'utilisateur, les mots de passe, les URL, les charges utiles floues, les modèles de données sensibles, les shells Web, etc. Le testeur peut simplement extraire ce référentiel sur une nouvelle machine de test et il aura accès à tous les types de listes dont il a besoin.

Version Mac de WebStorm
Outils de développement JavaScript utiles

ZendStudio 13.5.1 Mac
Puissant environnement de développement intégré PHP

Navigateur d'examen sécurisé
Safe Exam Browser est un environnement de navigation sécurisé permettant de passer des examens en ligne en toute sécurité. Ce logiciel transforme n'importe quel ordinateur en poste de travail sécurisé. Il contrôle l'accès à n'importe quel utilitaire et empêche les étudiants d'utiliser des ressources non autorisées.

MinGW - GNU minimaliste pour Windows
Ce projet est en cours de migration vers osdn.net/projects/mingw, vous pouvez continuer à nous suivre là-bas. MinGW : un port Windows natif de GNU Compiler Collection (GCC), des bibliothèques d'importation et des fichiers d'en-tête librement distribuables pour la création d'applications Windows natives ; inclut des extensions du runtime MSVC pour prendre en charge la fonctionnalité C99. Tous les logiciels MinGW peuvent fonctionner sur les plates-formes Windows 64 bits.