Maison >développement back-end >Tutoriel Python >décompresser dans PyTorch

décompresser dans PyTorch

Susan Sarandon
Susan Sarandonoriginal
2025-01-05 04:49:46335parcourir

unsqueeze in PyTorch

Achetez-moi un café☕

*Mon message explique squeeze().

unsqueeze() peut obtenir le tenseur 1D ou plus D de zéro ou plusieurs éléments avec une dimension supplémentaire dont la taille est 1 à partir du tenseur 0D ou plus D de zéro ou plusieurs éléments, comme indiqué ci-dessous :

*Mémos :

  • unsqueeze() peut être utilisé avec une torche ou un tenseur.
  • Le 1er argument (entrée) avec torch ou en utilisant un tenseur (Required-Type : tenseur de int, float, complexe ou bool).
  • Le 2ème argument avec une torche ou le 1er argument avec un tenseur est dim(Required-Type:int). *Il peut ajouter la dimension dont la taille est 1 à une position spécifique.
import torch

my_tensor = torch.tensor([[0, 1, 2],
                          [3, 4, 5],
                          [6, 7, 8],
                          [10, 11, 12]])
torch.unsqueeze(input=my_tensor, dim=0)
my_tensor.unsqueeze(dim=0)
torch.unsqueeze(input=my_tensor, dim=-3)
# tensor([[[0, 1, 2],
#          [3, 4, 5],
#          [6, 7, 8]
#          [10, 11, 12]]])

torch.unsqueeze(input=my_tensor, dim=1)
torch.unsqueeze(input=my_tensor, dim=-2)
# tensor([[[0, 1, 2]],
#         [[3, 4, 5]],
#         [[6, 7, 8]]
#         [[10, 11, 12]]])

torch.unsqueeze(input=my_tensor, dim=2)
torch.unsqueeze(input=my_tensor, dim=-1)
# tensor([[[0], [1], [2]],
#         [[3], [4], [5]],
#         [[6], [7], [8]],
#         [[10], [11], [12]]])

torch.unsqueeze(input=my_tensor, dim=3)
torch.unsqueeze(input=my_tensor, dim=-1)
# tensor([[[[0], [1], [2], [3]], [[4], [5], [6], [7]]],
#         [[[8], [9], [10], [11]], [[12], [13], [14], [15]]],
#         [[[16], [17], [18], [19]], [[20], [21], [22], [23]]]])

my_tensor = torch.tensor([[0., 1., 2.],
                          [3., 4., 5.],
                          [6., 7., 8.],
                          [10., 11., 12.]])
torch.unsqueeze(input=my_tensor, dim=0)
# tensor([[[0., 1., 2.],
#          [3., 4., 5.],
#          [6., 7., 8.],
#          [10., 11., 12.]]])

my_tensor = torch.tensor([[0.+0.j, 1.+0.j, 2.+0.j],
                          [3.+0.j, 4.+0.j, 5.+0.j],
                          [6.+0.j, 7.+0.j, 8.+0.j],
                          [10.+0.j, 11.+0.j, 12.+0.j]])
torch.unsqueeze(input=my_tensor, dim=0)
# tensor([[[0.+0.j, 1.+0.j, 2.+0.j],
#          [3.+0.j, 4.+0.j, 5.+0.j],
#          [6.+0.j, 7.+0.j, 8.+0.j],
#          [10.+0.j, 11.+0.j, 12.+0.j]]])

my_tensor = torch.tensor([[True, False, True],
                          [False, True, False],
                          [True, False, True],
                          [False, True, False]])
torch.unsqueeze(input=my_tensor, dim=0)
# tensor([[[True, False, True],
#          [False, True, False],
#          [True, False, True],
#          [False, True, False]]])

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration:
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn