


Comment créer et chaîner des décorateurs en Python
Création de décorateurs
Écrire une fonction de décorateur qui prend une autre fonction, appelée une fonction "encapsulée", en argument :
def my_decorator(func): # Code to execute before calling the wrapped function print("Before the function runs") # Call the wrapped function and store its return value result = func() # Code to execute after calling the wrapped function print("After the function runs") # Return the result of the wrapped function return result # Example of a decorator in action @my_decorator def say_hello(): print("Hello, world!")
Chaînage Décorateurs
Utilisez l'opérateur @ pour appliquer plusieurs décorateurs à la même fonction :
@my_decorator @another_decorator def chained_function(): print("This function is doubly decorated")
Décorateurs avec arguments
Autoriser les décorateurs à accepter les arguments :
def decorator_with_arg(arg1, arg2): def decorator(func): # Use the decorator arguments to modify the wrapped function's behavior func.arg1 = arg1 func.arg2 = arg2 return func # Example of a decorator with arguments @decorator_with_arg("foo", "bar") def my_function(): print("Args:", my_function.arg1, my_function.arg2)
Décorateurs pour la classe Méthodes
Utiliser des décorateurs pour les méthodes d'une classe :
class MyClass: @classmethod def my_class_method(cls): print("This is a class method")
Pratique : Décorer un décorateur
Créer un décorateur qui fait n'importe quel les autres décorateurs acceptent les arguments :
def decorator_with_args(decorator_to_enhance): def decorator_maker(*args, **kwargs): def decorator_wrapper(func): # Wrap the original decorator and pass the arguments return decorator_to_enhance(func, *args, **kwargs) return decorator_wrapper # Example of a decorated decorator @decorator_with_args def decorated_decorator(func, *args, **kwargs): print("Args:", args, kwargs) return func @decorated_decorator(10, 20, name="John") def my_function(): print("Decorated function")
Meilleur Pratiques
- Évitez de ralentir le code en raison de la surcharge du décorateur.
- Utilisez functools.wraps() pour conserver les informations de la fonction d'origine.
- Les décorateurs sont permanents une fois appliqués à une fonction.
- Envisagez de les utiliser pour déboguer ou étendre les fonctionnalités existantes à partir de sources externes. bibliothèques.
Exemples d'utilisation
Utiliser des décorateurs pour des tâches telles que :
- Mesurer le temps d'exécution d'une fonction (@benchmark)
- Journalisation des appels de fonction (@logging)
- Comptage des appels de fonction (@counter)
- Résultats de la fonction de mise en cache
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Python est plus facile à apprendre et à utiliser, tandis que C est plus puissant mais complexe. 1. La syntaxe Python est concise et adaptée aux débutants. Le typage dynamique et la gestion automatique de la mémoire le rendent facile à utiliser, mais peuvent entraîner des erreurs d'exécution. 2.C fournit des fonctionnalités de contrôle de bas niveau et avancées, adaptées aux applications haute performance, mais a un seuil d'apprentissage élevé et nécessite une gestion manuelle de la mémoire et de la sécurité.

Python et C ont des différences significatives dans la gestion et le contrôle de la mémoire. 1. Python utilise la gestion automatique de la mémoire, basée sur le comptage des références et la collecte des ordures, simplifiant le travail des programmeurs. 2.C nécessite une gestion manuelle de la mémoire, en fournissant plus de contrôle mais en augmentant la complexité et le risque d'erreur. Quelle langue choisir doit être basée sur les exigences du projet et la pile de technologie d'équipe.

Les applications de Python en informatique scientifique comprennent l'analyse des données, l'apprentissage automatique, la simulation numérique et la visualisation. 1.Numpy fournit des tableaux multidimensionnels et des fonctions mathématiques efficaces. 2. Scipy étend la fonctionnalité Numpy et fournit des outils d'optimisation et d'algèbre linéaire. 3. Pandas est utilisé pour le traitement et l'analyse des données. 4.Matplotlib est utilisé pour générer divers graphiques et résultats visuels.

Que ce soit pour choisir Python ou C dépend des exigences du projet: 1) Python convient au développement rapide, à la science des données et aux scripts en raison de sa syntaxe concise et de ses bibliothèques riches; 2) C convient aux scénarios qui nécessitent des performances élevées et un contrôle sous-jacent, tels que la programmation système et le développement de jeux, en raison de sa compilation et de sa gestion de la mémoire manuelle.

Python est largement utilisé dans la science des données et l'apprentissage automatique, s'appuyant principalement sur sa simplicité et son puissant écosystème de bibliothèque. 1) Pandas est utilisé pour le traitement et l'analyse des données, 2) Numpy fournit des calculs numériques efficaces, et 3) Scikit-Learn est utilisé pour la construction et l'optimisation du modèle d'apprentissage automatique, ces bibliothèques font de Python un outil idéal pour la science des données et l'apprentissage automatique.

Est-ce suffisant pour apprendre Python pendant deux heures par jour? Cela dépend de vos objectifs et de vos méthodes d'apprentissage. 1) Élaborer un plan d'apprentissage clair, 2) Sélectionnez les ressources et méthodes d'apprentissage appropriées, 3) la pratique et l'examen et la consolidation de la pratique pratique et de l'examen et de la consolidation, et vous pouvez progressivement maîtriser les connaissances de base et les fonctions avancées de Python au cours de cette période.

Les applications clés de Python dans le développement Web incluent l'utilisation des cadres Django et Flask, le développement de l'API, l'analyse et la visualisation des données, l'apprentissage automatique et l'IA et l'optimisation des performances. 1. Framework Django et Flask: Django convient au développement rapide d'applications complexes, et Flask convient aux projets petits ou hautement personnalisés. 2. Développement de l'API: Utilisez Flask ou DjangorestFramework pour construire RestulAPI. 3. Analyse et visualisation des données: utilisez Python pour traiter les données et les afficher via l'interface Web. 4. Apprentissage automatique et AI: Python est utilisé pour créer des applications Web intelligentes. 5. Optimisation des performances: optimisée par la programmation, la mise en cache et le code asynchrones

Python est meilleur que C dans l'efficacité du développement, mais C est plus élevé dans les performances d'exécution. 1. La syntaxe concise de Python et les bibliothèques riches améliorent l'efficacité du développement. Les caractéristiques de type compilation et le contrôle du matériel de CC améliorent les performances d'exécution. Lorsque vous faites un choix, vous devez peser la vitesse de développement et l'efficacité de l'exécution en fonction des besoins du projet.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

AI Hentai Generator
Générez AI Hentai gratuitement.

Article chaud

Outils chauds

MantisBT
Mantis est un outil Web de suivi des défauts facile à déployer, conçu pour faciliter le suivi des défauts des produits. Cela nécessite PHP, MySQL et un serveur Web. Découvrez nos services de démonstration et d'hébergement.

SublimeText3 Linux nouvelle version
Dernière version de SublimeText3 Linux

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire

SublimeText3 version Mac
Logiciel d'édition de code au niveau de Dieu (SublimeText3)