recherche
Maisondéveloppement back-endTutoriel PythonComment ajouter efficacement une colonne de compteur séquentiel aux DataFrames Pandas groupés sans utiliser de fonction de rappel ?

How to Efficiently Add a Sequential Counter Column to Grouped Pandas DataFrames Without Using a Callback Function?

Ajout d'une colonne de compteur séquentiel à des DataFrames groupés sans rappel

Lorsque vous essayez d'ajouter une colonne de compteur séquentiel à des groupes au sein d'un DataFrame, un la fonction de rappel n’est peut-être pas l’approche la plus efficace. Considérez le DataFrame suivant :

df = pd.DataFrame(
    columns="index c1 c2 v1".split(),
    data=[
            [0,  "A",  "X",    3, ],
            [1,  "A",  "X",    5, ],
            [2,  "A",  "Y",    7, ],
            [3,  "A",  "Y",    1, ],
            [4,  "B",  "X",    3, ],
            [5,  "B",  "X",    1, ],
            [6,  "B",  "X",    3, ],
            [7,  "B",  "Y",    1, ],
            [8,  "C",  "X",    7, ],
            [9,  "C",  "Y",    4, ],
            [10,  "C",  "Y",    1, ],
            [11,  "C",  "Y",    6, ],]).set_index("index", drop=True)

L'objectif est de créer une nouvelle colonne "seq" qui contient des numéros séquentiels pour chaque groupe, ce qui donne le résultat suivant :

   c1 c2  v1  seq
0   A  X   3    1
1   A  X   5    2
2   A  Y   7    1
3   A  Y   1    2
4   B  X   3    1
5   B  X   1    2
6   B  X   3    3
7   B  Y   1    1
8   C  X   7    1
9   C  Y   4    1
10  C  Y   1    2
11  C  Y   6    3

Évitement de la fonction de rappel :

Au lieu d'utiliser une fonction de rappel, nous pouvons exploiter la méthode cumcount() pour obtenir le même résultat de manière plus efficace. cumcount() compte le nombre d'occurrences de chaque valeur unique dans un groupe et renvoie une série pandas avec le nombre cumulé.

df["seq"] = df.groupby(['c1', 'c2']).cumcount() + 1

Cette approche modifie directement le DataFrame et évite la surcharge d'une fonction de rappel.

Personnalisation du numéro de départ :

Si vous souhaitez que le séquençage commence à 1 au lieu de 0, vous pouvez ajouter 1 au résultat :

df["seq"] = df.groupby(['c1', 'c2']).cumcount() + 1

En utilisant la méthode cumcount(), nous simplifions le processus d'ajout d'une colonne de compteur séquentiel aux trames de données groupées, améliorant à la fois la lisibilité et les performances.

Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

Déclaration
Le contenu de cet article est volontairement contribué par les internautes et les droits d'auteur appartiennent à l'auteur original. Ce site n'assume aucune responsabilité légale correspondante. Si vous trouvez un contenu suspecté de plagiat ou de contrefaçon, veuillez contacter admin@php.cn
Comment les tableaux sont-ils utilisés dans l'informatique scientifique avec Python?Comment les tableaux sont-ils utilisés dans l'informatique scientifique avec Python?Apr 25, 2025 am 12:28 AM

ArraySinpython, en particulier Vianumpy, arecrucialinsciciencomputingfortheirefficiency andversatity.1) ils sont les opérations de data-analyse et la machineauning.2)

Comment gérez-vous différentes versions Python sur le même système?Comment gérez-vous différentes versions Python sur le même système?Apr 25, 2025 am 12:24 AM

Vous pouvez gérer différentes versions Python en utilisant Pyenv, Venv et Anaconda. 1) Utilisez PYENV pour gérer plusieurs versions Python: installer PYENV, définir les versions globales et locales. 2) Utilisez VENV pour créer un environnement virtuel pour isoler les dépendances du projet. 3) Utilisez Anaconda pour gérer les versions Python dans votre projet de science des données. 4) Gardez le Système Python pour les tâches au niveau du système. Grâce à ces outils et stratégies, vous pouvez gérer efficacement différentes versions de Python pour assurer le bon fonctionnement du projet.

Quels sont les avantages de l'utilisation de tableaux Numpy sur des tableaux Python standard?Quels sont les avantages de l'utilisation de tableaux Numpy sur des tableaux Python standard?Apr 25, 2025 am 12:21 AM

NumpyArrayShaveSeveralAdvantages OverStandardPyThonarRays: 1) TheaReMuchfasterDuetoc-bases Implementation, 2) Ils sont économisés par le therdémor

Comment la nature homogène des tableaux affecte-t-elle les performances?Comment la nature homogène des tableaux affecte-t-elle les performances?Apr 25, 2025 am 12:13 AM

L'impact de l'homogénéité des tableaux sur les performances est double: 1) L'homogénéité permet au compilateur d'optimiser l'accès à la mémoire et d'améliorer les performances; 2) mais limite la diversité du type, ce qui peut conduire à l'inefficacité. En bref, le choix de la bonne structure de données est crucial.

Quelles sont les meilleures pratiques pour écrire des scripts Python exécutables?Quelles sont les meilleures pratiques pour écrire des scripts Python exécutables?Apr 25, 2025 am 12:11 AM

Tocraftexecutablepythonscripts, suivant les autres proches: 1) addashebangline (#! / Usr / bin / leppython3) tomakethescriptexecutable.2) setpermisessionswithchmod xyour_script.py.3) organisationwithacleardocstringanduseifname == "__ __" Main __ ".

En quoi les tableaux Numpy diffèrent-ils des tableaux créés à l'aide du module de tableau?En quoi les tableaux Numpy diffèrent-ils des tableaux créés à l'aide du module de tableau?Apr 24, 2025 pm 03:53 PM

NumpyArraysarebetterFornumericalOperations andMulti-dimensionaldata, tandis que la réalisation de la réalisation

Comment l'utilisation des tableaux Numpy se compare-t-il à l'utilisation des tableaux de modules de tableau dans Python?Comment l'utilisation des tableaux Numpy se compare-t-il à l'utilisation des tableaux de modules de tableau dans Python?Apr 24, 2025 pm 03:49 PM

NumpyArraysareBetterForheAVYVumericalComputing, tandis que la réalisation de points contraints de réalisation.1) NumpyArraySoFerversATACTORATIONS ajusté pour les données

Comment le module CTYPES est-il lié aux tableaux dans Python?Comment le module CTYPES est-il lié aux tableaux dans Python?Apr 24, 2025 pm 03:45 PM

CTYPESALLOWSCREATINGAndMANIPulationc-styLearRaySInpython.1) UsectypeStOinterfaceWithClibraryForPerformance.2) Createc-stylearRaysFornumericalComptations.3) PassArrayStocfunction

See all articles

Outils d'IA chauds

Undresser.AI Undress

Undresser.AI Undress

Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover

AI Clothes Remover

Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool

Undress AI Tool

Images de déshabillage gratuites

Clothoff.io

Clothoff.io

Dissolvant de vêtements AI

Video Face Swap

Video Face Swap

Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Outils chauds

Version Mac de WebStorm

Version Mac de WebStorm

Outils de développement JavaScript utiles

DVWA

DVWA

Damn Vulnerable Web App (DVWA) est une application Web PHP/MySQL très vulnérable. Ses principaux objectifs sont d'aider les professionnels de la sécurité à tester leurs compétences et leurs outils dans un environnement juridique, d'aider les développeurs Web à mieux comprendre le processus de sécurisation des applications Web et d'aider les enseignants/étudiants à enseigner/apprendre dans un environnement de classe. Application Web sécurité. L'objectif de DVWA est de mettre en pratique certaines des vulnérabilités Web les plus courantes via une interface simple et directe, avec différents degrés de difficulté. Veuillez noter que ce logiciel

SublimeText3 version anglaise

SublimeText3 version anglaise

Recommandé : version Win, prend en charge les invites de code !

Version crackée d'EditPlus en chinois

Version crackée d'EditPlus en chinois

Petite taille, coloration syntaxique, ne prend pas en charge la fonction d'invite de code

Bloc-notes++7.3.1

Bloc-notes++7.3.1

Éditeur de code facile à utiliser et gratuit