


Map() vs compréhensions de listes en Python : lequel est le plus rapide et le plus pythonique ?
Comparaison des performances Python : Map() et compréhension de liste
En Python, deux outils polyvalents pour la manipulation de données sont map() et list compréhensions. Bien que les deux effectuent des tâches similaires, il peut y avoir des circonstances où l'un excelle par rapport à l'autre.
L'un est-il plus efficace ?
Dans certains cas, map() peut être légèrement plus rapide que la compréhension de liste, en particulier lorsque vous utilisez la même fonction pour les deux opérations. Cependant, les compréhensions de listes peuvent présenter des performances améliorées dans les scénarios où map() nécessite une fonction lambda.
Préférence Pythonic
En ce qui concerne le style de codage Pythonic, les compréhensions de listes sont généralement favorisée. Les pythonistes les considèrent souvent comme plus simples et plus clairs. Ils fournissent un moyen concis de transformer les éléments de données, rendant le code plus lisible.
Benchmarks de performances
Pour illustrer les différences de performances, considérons le benchmark suivant où une fonction identique (hex) est utilisé :
$ python -m timeit -s'xs=range(10)' 'map(hex, xs)' 100000 loops, best of 3: 4.86 usec per loop $ python -m timeit -s'xs=range(10)' '[hex(x) for x in xs]' 100000 loops, best of 3: 5.58 usec per loop
Dans cet exemple, map() est microscopiquement plus rapide en raison de l'absence de lambda fonction.
Cependant, lorsqu'une fonction lambda est introduite, la comparaison des performances s'inverse :
$ python -m timeit -s'xs=range(10)' 'map(lambda x: x+2, xs)' 100000 loops, best of 3: 4.24 usec per loop $ python -m timeit -s'xs=range(10)' '[x+2 for x in xs]' 100000 loops, best of 3: 2.32 usec per loop
Par conséquent, le choix entre map() et les compréhensions de liste doit être évalué en fonction de facteurs tels que exigences de performances, lisibilité du code et principes Pythonic.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

ArraySinpython, en particulier Vianumpy, arecrucialinsciciencomputingfortheirefficiency andversatity.1) ils sont les opérations de data-analyse et la machineauning.2)

Vous pouvez gérer différentes versions Python en utilisant Pyenv, Venv et Anaconda. 1) Utilisez PYENV pour gérer plusieurs versions Python: installer PYENV, définir les versions globales et locales. 2) Utilisez VENV pour créer un environnement virtuel pour isoler les dépendances du projet. 3) Utilisez Anaconda pour gérer les versions Python dans votre projet de science des données. 4) Gardez le Système Python pour les tâches au niveau du système. Grâce à ces outils et stratégies, vous pouvez gérer efficacement différentes versions de Python pour assurer le bon fonctionnement du projet.

NumpyArrayShaveSeveralAdvantages OverStandardPyThonarRays: 1) TheaReMuchfasterDuetoc-bases Implementation, 2) Ils sont économisés par le therdémor

L'impact de l'homogénéité des tableaux sur les performances est double: 1) L'homogénéité permet au compilateur d'optimiser l'accès à la mémoire et d'améliorer les performances; 2) mais limite la diversité du type, ce qui peut conduire à l'inefficacité. En bref, le choix de la bonne structure de données est crucial.

Tocraftexecutablepythonscripts, suivant les autres proches: 1) addashebangline (#! / Usr / bin / leppython3) tomakethescriptexecutable.2) setpermisessionswithchmod xyour_script.py.3) organisationwithacleardocstringanduseifname == "__ __" Main __ ".

NumpyArraysarebetterFornumericalOperations andMulti-dimensionaldata, tandis que la réalisation de la réalisation

NumpyArraysareBetterForheAVYVumericalComputing, tandis que la réalisation de points contraints de réalisation.1) NumpyArraySoFerversATACTORATIONS ajusté pour les données

CTYPESALLOWSCREATINGAndMANIPulationc-styLearRaySInpython.1) UsectypeStOinterfaceWithClibraryForPerformance.2) Createc-stylearRaysFornumericalComptations.3) PassArrayStocfunction


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

ZendStudio 13.5.1 Mac
Puissant environnement de développement intégré PHP

MantisBT
Mantis est un outil Web de suivi des défauts facile à déployer, conçu pour faciliter le suivi des défauts des produits. Cela nécessite PHP, MySQL et un serveur Web. Découvrez nos services de démonstration et d'hébergement.

SublimeText3 version chinoise
Version chinoise, très simple à utiliser

Version crackée d'EditPlus en chinois
Petite taille, coloration syntaxique, ne prend pas en charge la fonction d'invite de code

Télécharger la version Mac de l'éditeur Atom
L'éditeur open source le plus populaire
