


Calculer des statistiques par groupe avec Pandas GroupBy
Introduction
Lorsque vous travaillez avec des données, il est souvent souhaitable d'analyser et de comparer les statistiques de différents groupes. Pandas, une importante bibliothèque Python pour la manipulation de données, offre la fonctionnalité GroupBy pour effectuer ces opérations sans effort.
Obtenir le nombre de lignes par groupe
Le moyen le plus simple d'obtenir le nombre de lignes pour chaque groupe consiste à utiliser Méthode .size(). Cette méthode renvoie une série contenant des décomptes par groupe :
df.groupby(['col1','col2']).size()
Pour récupérer les décomptes au format tabulaire (c'est-à-dire sous forme de DataFrame avec une colonne "counts") :
df.groupby(['col1', 'col2']).size().reset_index(name='counts')
Calcul de plusieurs statistiques par groupe
Pour calculer plusieurs statistiques, utilisez la méthode .agg() avec un dictionnaire. Les clés spécifient les colonnes à calculer, tandis que les valeurs sont des listes des agrégations souhaitées (par exemple, « moyenne », « médiane » et « nombre ») :
df.groupby(['col1', 'col2']).agg({ 'col3': ['mean', 'count'], 'col4': ['median', 'min', 'count'] })
Personnalisation de la sortie des données
Pour plus de contrôle sur la sortie, des agrégations individuelles peuvent être jointes :
counts = df.groupby(['col1', 'col2']).size().to_frame(name='counts') counts.join(gb.agg({'col3': 'mean'}).rename(columns={'col3': 'col3_mean'})) \ .join(gb.agg({'col4': 'median'}).rename(columns={'col4': 'col4_median'})) \ .join(gb.agg({'col4': 'min'}).rename(columns={'col4': 'col4_min'})) \ .reset_index()
Cela produit un résultat plus structuré DataFrame avec des étiquettes de colonnes non imbriquées.
Notes de bas de page
Dans l'exemple fourni, les valeurs nulles peuvent entraîner des écarts dans le nombre de lignes utilisées pour différents calculs. Cela souligne l'importance de prendre en compte les valeurs nulles lors de l'interprétation des statistiques par groupe.
Ce qui précède est le contenu détaillé de. pour plus d'informations, suivez d'autres articles connexes sur le site Web de PHP en chinois!

ToAppendementStoapyThonList, usetheAppend () methodforsingleelements, prolong () forulTipleElements, andInsert () forSpecificPositifs.1) useAppend () foraddingOneelementAtheend.2) useExtend () ToaddMultipleElementSEFFIENTLY.3)

TOCREATEAPYTHONLIST, USSquareBracket [] et SEPARateItemswithcommas.1) listsaredynynamicandcanholdmixeddatatypes.2) useAppend (), retire (), andslitingformMipulation.3) Listcomprehensationafficientforcereglists.4)

Dans les domaines de la finance, de la recherche scientifique, des soins médicaux et de l'IA, il est crucial de stocker et de traiter efficacement les données numériques. 1) En finance, l'utilisation de fichiers mappés de mémoire et de bibliothèques Numpy peut considérablement améliorer la vitesse de traitement des données. 2) Dans le domaine de la recherche scientifique, les fichiers HDF5 sont optimisés pour le stockage et la récupération des données. 3) Dans les soins médicaux, les technologies d'optimisation de la base de données telles que l'indexation et le partitionnement améliorent les performances des requêtes de données. 4) Dans l'IA, la fragmentation des données et la formation distribuée accélèrent la formation du modèle. Les performances et l'évolutivité du système peuvent être considérablement améliorées en choisissant les bons outils et technologies et en pesant les compromis entre les vitesses de stockage et de traitement.

PythonarRaySaCreatEdusingtheArrayModule, notbuilt-inlikelistes.1) importtheaRaymodule.2) spécifiertheTypecode, par exemple, 'I'ForIntegers.3) initializewithvalues.

En plus de la ligne Shebang, il existe de nombreuses façons de spécifier un interprète Python: 1. Utilisez les commandes Python directement à partir de la ligne de commande; 2. Utilisez des fichiers batch ou des scripts shell; 3. Utilisez des outils de construction tels que Make ou Cmake; 4. Utilisez des coureurs de tâches tels que Invoke. Chaque méthode présente ses avantages et ses inconvénients, et il est important de choisir la méthode qui répond aux besoins du projet.

ForhandlingLargedatasetSInpython, UsenumpyArraysforbetterperformance.1) NumpyArraysAremeMory-EfficientAndFasterFornumericalOperations.2) EvitUnneceSsaryTypeConversions.3) Le effet de levier

Inpython, listSusedynamicMemoryallocation withover-allocation, whileLumpyArraySallocateFixedMemory.1) listsallocatemoreMoryThreededEdededInitialement, redimensipwenessary.2) NumpyArraySallocateExactMemoryForElements, offrantwectable usinessflexibilité.

Inpython, YouCanscthedatatatypeyfelemememedenernSspant.1) usenpynernrump.1) usenpynerp.dloatp.ploatm64, formateur préséconstrolatatype.


Outils d'IA chauds

Undresser.AI Undress
Application basée sur l'IA pour créer des photos de nu réalistes

AI Clothes Remover
Outil d'IA en ligne pour supprimer les vêtements des photos.

Undress AI Tool
Images de déshabillage gratuites

Clothoff.io
Dissolvant de vêtements AI

Video Face Swap
Échangez les visages dans n'importe quelle vidéo sans effort grâce à notre outil d'échange de visage AI entièrement gratuit !

Article chaud

Outils chauds

MantisBT
Mantis est un outil Web de suivi des défauts facile à déployer, conçu pour faciliter le suivi des défauts des produits. Cela nécessite PHP, MySQL et un serveur Web. Découvrez nos services de démonstration et d'hébergement.

Dreamweaver CS6
Outils de développement Web visuel

Bloc-notes++7.3.1
Éditeur de code facile à utiliser et gratuit

Envoyer Studio 13.0.1
Puissant environnement de développement intégré PHP

Adaptateur de serveur SAP NetWeaver pour Eclipse
Intégrez Eclipse au serveur d'applications SAP NetWeaver.
